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INTRODUCTION 
 

Gliomas are the most common brain tumors [1]. In line 

with the corresponding World Health Organization 

(WHO)-standard, gliomas are classified from grade I to 

grade IV [2]. Importantly, grade II and III gliomas are 

considered LGGs by the Cancer Genome Atlas 

(TCGA). LGGs could be classified on the basis of the 

clinicopathologic features, such as the 1p/19q codeletion 

and isocitrate dehydrogenase (IDH) mutation status [3]. 

Although LGGs patients possess better prognosis, 70% of 

them will develop malignant progression within 10 years 

[4]. Currently, the most common clinical management 

strategies, including surgery, chemotherapy, and 

radiotherapy, are applied to treat LGG [5]. Nevertheless, 

the number of clinical anticancer drugs used to treat 

patients with LGG has remained scarce, and the clinical 

prognosis of LGG patients is still not satisfactory. Thence, 

it is imminently needed to examine novel molecular 

signatures for the evaluation of the prognosis and 

individualized treatment of patients with LGG. 
 

DUSP10, also named MKP5, plays a vital part in cell 

growth and proliferation [6]. DUSP10 protein exists as 
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ABSTRACT 
 

Objective: The role of dual-specificity phosphatase 10 (DUSP10) has been investigated in several types of 
cancer. Nevertheless, the underlying function of DUSP10 in lower-grade glioma (LGG) remains undetermined. 
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DUSP10 expression and clinicopathologic features, prognosis, biological processes, immune traits, gene 
variations, and treatment responses based on the expression features in LGG. In vitro studies were conducted 
to detect the underlying functions of DUSP10 in LGG. 
Results: Unconventionally boosted DUSP10 expression and higher DUSP10 expression correlated with poorer 
prognosis were discovered in various tumors, including LGG. Fortunately, DUSP10 expression was proven to be 
an independent prognostic indicator of patients with LGG. Additionally, DUSP10 expression was tightly linked 
to the immune modulation, gene mutations, and response to immunotherapy/chemotherapy in LGG patients. 
In vitro studies illustrated that the DUSP10 was abnormally increased and pivotal for cell proliferation in LGG. 
Conclusions: Collectively, we verified that DUSP10 was an independent prognostic indicator and may become a 
novelty target of targeted therapy of LGG. 

mailto:ndefy20359@ncu.edu.cn
mailto:ndefy02014@ncu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 5674 AGING 

two Cdc25 homology regions: a specific 150 N-terminal 

amino acid sequence and a C-terminal catalytic domain 

[7]. Recent research has revealed that elevated DUSP10 

expression was strictly associated with the malignant 

development of several cancers, such as liver [8], 

colorectal [9], breast [10], and pancreatic [11] cancers. 

Nevertheless, the specific role of DUSP10 in patients 

with LGG is still unknown. Thus, we implemented 

bioinformatic analysis and in vitro studies verification 

to inspect the underlying features of DUSP10 in LGG 

patients. This research may be significant for evaluating 

the survival and excavating effective therapies for LGG 

patients. 

 

Firstly, we initiated a pan-cancer analysis of DUSP10 

and determined that the prognostic significance of 

DUSP10 in pan-LGG was more valuable than in other 

tumors. Thus, it was necessary to implement further 

study to examine the prognostic significance of 

DUSP10 in LGG. Subsequently, we utilized the three 

independent LGG cohorts, including the TCGA, 

Chinese Glioma Genome Atlas (CGGA), and 

GSE61374 cohorts, to further inspect the prognostic 

significance of DUSP10 in LGG. In line with the 

median values of DUSP10 expression, we categorized 

the LGG patients into high- and low-DUSP10 

expression subtypes. Survival analysis verified that 

high-DUSP10 subset possessed worse prognosis than 

low-DUSP10 subset. Multiple studies have illustrated 

that tumor immune microenvironment may be strongly 

related to the survival of patients with tumors [12, 13]. 

Therefore, we estimated the connection between 

DUSP10 expression and immunological traits 

(including stromal and immune scores, tumor-

infiltrating immune cells [TIICs], and immune 

checkpoint genes [ICPGs] expression), genomic 

alternations, and responses to immunotherapy/ 

chemotherapy. Afterwards, we conducted the in vitro 

studies to ascertain the anomalous expression and the 

underlying functions of DUSP10 in LGG. In short, we 

considered that DUSP10 was an independent prognostic 

indicator and may play a critical part in the treatment of 

LGG patients based on the above-presented 

comprehensive analysis. 

 

RESULTS 
 

Pan-cancer analysis of DUSP10 
 

The flow diagram of the research was exhibited in 

Supplementary Figure 1. By contrasting the DUSP10 

expression data of pan-cancer, we discovered that 

DUSP10 was aberrantly increased in diverse tumors, 

including LGG (Figure 1A). Forest charts exhibited that 

increased DUSP10 expression was inversely connected 

with overall survival (OS) in HNSC, KIRC, LGG, 

LIHC, PAAD, THCA, UCS, and UVM (Figure 1B). 

Additionally, the results of survival analysis also 

demonstrated that higher DUSP10 expression tended to 

demonstrate a worse prognosis in pan-LGG 

(Figure 1C). 

 

Afterwards, we excavated the interrelation between 

DUSP10 expression and ICPGs expression in 33 

tumors. The co-expression results testified that DUSP10 

was tightly correlated with most of ICPGs in pan-LGG 

(Figure 1D). Moreover, we inspected the connection 

between DUSP10 expression and tumor mutation 

burden (TMB) in 33 types of tumors. In COAD, LGG, 

PAAD, SKCM, and THCA, DUSP10 expression was 

positively linked to TMB, whereas in HNSC and LUSC, 

it was inversely linked to TMB (Figure 1E). 

 

Correlation between DUSP10 and clinicopathologic 

features in LGG 

 

In line with the median values of DUSP10 expression, 

we isolated LGG samples into high-DUSP10 and low-

DUSP10 subsets and inspected the interrelation between 

DUSP10 expression and clinicopathologic properties in 

the three datasets. The results declared that up-regulated 

DUSP10 expression was obviously linked to older age, 

1p/19q non-codel, IDH wildtype, and MGMT 

unmethylation in the TCGA dataset (Figure 2A, 2B). 

Analogical outcomes were examined in CGGA 

(Supplementary Figure 2A, 2B) and GSE61374 

(Supplementary Figure 3A, 3B) datasets. 

 

Elevated DUSP10 expression correlates with poor 

prognosis of LGG 

 

The Kaplan-Meier (KM) analysis was applied to 

explore the differential OS prognosis between the two 

subtypes in LGG patients. The results illustrated that the 

OS of high-DUSP10 subset was apparently worse than 

low-DUSP10 subset in the TCGA (Figure 2C), CGGA 

(Supplementary Figure 2C), and GSE61374 

(Supplementary Figure 3C) datasets. Therefore, we 

studied the association between DUSP10 expression, 

risk score, and OS status in LGG patients and 

discovered that up-regulated DUSP10 expression was 

related to the higher risk score and worse OS status in 

TCGA (Figure 2D), CGGA (Supplementary Figure 2D), 

and GSE61374 (Supplementary Figure 3D) datasets. 

The detailed proportion of survival status of LGG 

samples was also examined in the TCGA (Figure 2E), 

CGGA (Supplementary Figure 2E), and GSE61374 

(Supplementary Figure 3E) datasets. Additionally, the 

area under the curves (AUCs) for 1/3/5-year OS were 
0.835, 0.781, and 0.763, respectively, in the TCGA 

dataset (Figure 2F); 0.755, 0.796, and 0.755, 

respectively, in the CGGA dataset (Supplementary 



www.aging-us.com 5675 AGING 

Figure 2F); and 0.647, 0.736, and 0.648, respectively, in 

GSE61374 dataset (Supplementary Figure 3F). 

 

Independent prognostic significance of DUSP10 in 

LGG 

 

Univariate and multivariate Cox regression analyses 

were executed to evaluate whether DUSP10 was an 

independent prognostic factor in the three datasets. The 

results indicated that DUSP10 expression, WHO grade, 

IDH, age, and 1p/19q were independent prognostic 

indicators of LGG patients in the TCGA cohort (Figure 

2G, 2H). In the CGGA dataset, we detected that 

DUSP10 expression, WHO grade, and 1p/19q were 

independent prognostic indicators of LGG patients 

(Supplementary Figure 2G, 2H). Similarly, in the

 

 
 

Figure 1. Pan-cancer analysis of DUSP10. (A) Differential expression of DUSP10 in normal and cancer tissues. (B) Univariate Cox 

regression analysis of DUSP10 expression in various tumors. (C) Kaplan-Meier analysis of DUSP10 in pan-LGG. (D) Co-expression of DUSP10 
and ICPGs in different cancers. (E) Differential TMB in diverse cancers. *P < 0.05, **P < 0.01, ***P < 0.001. 



www.aging-us.com 5676 AGING 

GSE61374 cohort, DUSP10 expression, age, and 

1p/19q were also considered independent prognostic 

indicators of LGG patients (Supplementary Figure 3G, 

3H). Thence, DUSP10 expression may be an 

independent prognostic indicator of LGG patients. 

Functional annotations of DUSP10 

 

We ascertained differentially expressed genes (DEGs) 

on the basis of the mean values of DUSP10 expression 

(|log2 (fold change)| >0.5 and P < 0.05). In total, we 

 

 
 

Figure 2. Clinical correlation analysis of DUSP10 in TCGA. (A) Association between DUSP10 expression and clinical traits of LGG in 

TCGA. (B) Variance analysis of DUSP10 expression in different clinical features (including age, gender, grade, and 1p/19q, IDH, and MGMT 
statuses) in the TCGA dataset. (C) Prognostic analysis of high-DUSP10 and low-DUSP10 subtypes in the TCGA dataset. (D) Distribution of risk 
score, OS, and OS status of high-DUSP10 and low-DUSP10 subtypes in the TCGA dataset. (E) Different proportions of the living situation 
between the two subtypes. (F) ROC curves representing the predictive role of the risk score in TCGA. (G, H) Univariate and multivariate Cox 
analyses of DUSP10 expression and clinicopathological characteristics in TCGA. *P < 0.05, **P < 0.01, ***P < 0.001.  
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screened out 461 down-regulated and 1819 up-regulated 

DEGs in the TCGA cohort and 637 down-regulated and 

1954 up-regulated DEGs in the CGGA cohort. 

Conspicuous DEGs in TCGA (Figure 3A) and CGGA 

(Supplementary Figure 4A) cohorts were displayed in 

the heatmap. Subsequently, these down-regulated and 

up-regulated DEGs were exploited to conduct Gene 

Ontology biological process (GO-BP) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analyses. 

In the TCGA dataset, the GO-BP results of down-

regulated DEGs indicated that down-regulated 

expression of DUSP10 was apparently associated with 

the regulation of nervous system development, 

regulation of trans-synaptic signaling, learning or 

memory, regulation of neurogenesis, and cognition. 

Additionally, up-regulated genes were majorly enriched 

 

 
 

Figure 3. Biological functions of DUSP10 in LGG in TCGA. (A) DEGs between the low-DUSP10 and high-DUSP10 expression LGG 

subgroups. (B, C) The GO-BP (B) and KEGG (C) analyses for DUSP10 in LGG patients in the TCGA dataset. (D) GSEA in the TCGA dataset. 
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in neutrophil activation, T cell activation, and response 

to the drug (Figure 3B). Analogical results were 

ascertained in the CGGA dataset (Supplementary Figure 

4B). The KEGG analysis in the TCGA (Figure 3C) and 

CGGA (Supplementary Figure 4C) datasets showed that 

down-regulated DEGs were enriched in neuroactive 

ligand-receptor interaction, and synaptic vesicle cycle, 

and up-regulated DEGs were mostly enriched in  

the PI3K-Akt and JAK-STAT signaling pathways, 

leukocyte transendothelial migration, and cell cycle. 

 

GSEA analysis was implemented to examine the 

underlying molecular mechanisms between high-

DUSP10 and low-DUSP10 subtypes in LGG. The 

results prompted that the high-DUSP10 subtype was 

majorly linked to the JAK-STAT signaling pathway, 

and leukocyte transendothelial migration in the TCGA 

dataset (Figure 3D). Analogical outcomes were found in 

the CGGA cohort (Supplementary Figure 4D). 

 

Connection between DUSP10 and immune traits 

 
The results of functional enrichment analysis exhibited 

the underlying association between DUSP10 and 

immune regulation in LGG. This urged us to estimate 

the interrelation between DUSP10 and immune traits in 

LGG. We adopted the ssGSEA algorithm to recognize 

the abundance of 29 immune-connected indicators to 

check the interrelation between DUSP10 expression and 

immune infiltration. The immune-associated signatures 

in low-DUSP10 subset were apparently lower than in 

high-DUSP10 subset in the TCGA (Figure 4A) and 

CGGA (Supplementary Figure 5A) datasets. The results 

disclosed that DUSP10 expression was positively 

related to the ESTIMATE, stromal and immune scores 

but inversely linked to tumor purity in the TCGA 

(Figure 4B) and CGGA (Supplementary Figure 5B) 

datasets. Moreover, we conducted the CIBERSORT 

algorithm to investigate the infiltration abundances of 

TIICs between the two subtypes. The infiltration 

abundances of resting memory CD4+ T cells, 

macrophages M1, and naive B cells were positively 

linked to DUSP10 expression, and macrophages M2, 

naive CD4+ T cells, and memory B cells were inversely 

related to DUSP10 expression in the TCGA cohort 

(Figure 4C, 4D). We discovered similar results from the 

CGGA dataset (Supplementary Figure 5C, 5D). 

 

Additionally, we also confirmed that DUSP10 

expression was positively connected with the majority 

of ICPGs in the TCGA dataset (Figure 4E). The detailed 

correlation between DUSP10 and some celebrated 

ICPGs (including PD1, PD-L1, CTLA4, CD28, CD80, 
and CD86) was explored by conducting a correlation 

analysis in the TCGA cohort (Figure 4F). The above-

mentioned outcomes were also determined in the 

CGGA dataset (Supplementary Figure 5E, 5F). 

Moreover, we examined the expression distribution of 

DUSP10 among distinct cell types in LGG immune 

microenvironment by exploiting GSE167960 dataset 

and found that DUSP10 was most elevated in immune 

cells (Supplementary Figure 6). 

 

DUSP10 expression is associated with gene 

alterations 

 

An accumulating body of research has disclosed that 

genomic variations might play a vital part in adjusting 

immune infiltration and tumor immunity [14, 15]. Thus, 

we employed copy number alteration (CNA) and 

somatic mutations analysis to recognize gene variations 

between low-DUSP10 and high-DUSP10 subsets. The 

frequency of CNA, both amplification and deletion, was 

obviously lower in low-DUSP10 subset than in high-

DUSP10 subset (Figure 5A, 5B). Whereafter, the 

“waterfall” plot was created to exhibit that both low- 

and high-DUSP10 expression subsets possessed specific 

mutated genes. The results indicated that the variation 

frequencies of IDH1 and CIC in low-DUSP10 subset 

were higher than in high-DUSP10 subset (Figure 5C, 

5D). Afterwards, we inspected the interrelation between 

DUSP10 expression and TMB level in LGG and 

detected that DUSP10 expression was positively 

connected with the TMB level (Figure 5E, 5F). The 

results exhibited that high-TMB subset owned worse 

OS than low-TMB subset (Figure 5G). Next, we further 

investigated the differential OS of distinct DUSP10 

expression in the low- and high-TMB subsets and 

discovered that higher DUSP10 expression and TMB 

level owned worser OS in patients with LGG 

(Figure 5H). 

 

Relationship between DUSP10 expression and 

treatment responses 

 

We executed the TIDE algorithm to forecast the 

reaction of LGG patients to immune checkpoint 

blockers (ICB) therapy and discovered that the high-

DUSP10 subtype acquired better TIDE scores than the 

low-DUSP10 subtype (Figure 6A). The DUSP10 

expression in responders to ICB therapy was higher 

than in non-responders (Figure 6B). Additionally, the 

proportion of responders in low-DUSP10 subset was 

also lower than in high-DUSP10 subset (Figure 6C). 

Thus, DUSP10 could be a potential immunotherapy 

target. 

 

We investigated the association between DUSP10 

expression and chemotherapeutics (such as PIK-93, 
TGX221, AKT inhibitor VIII, MK-2206, bortezmib, 

and MG-132) based on the results of functional 

annotations to evaluate LGG patients with distinct 
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DUSP10 expression in guiding chemotherapy. The 

results testified that the high-DUSP10 subgroup was 

related to lower inhibitory centration (IC50) in these 

anticarcinogens (Figure 6D). It means that high-

DUSP10 subtype was more sensitive to these 

anticarcinogens. 

In vitro experiments of DUSP10 in LGG 
 

The protein expression levels of DUSP10 were 

apparently higher in LGG tissues when compared to 

para-cancerous tissues (Figure 7A). Additionally, we 

examined the protein and mRNA expression of 

 

 
 

Figure 4. Different TME and immunological characteristics of the low-DUSP10 and high-DUSP10 subtypes in TCGA. (A, B) 

Association between DUSP10 expression and 29 immune-associated signatures, ESTIMATE, immune, stromal scores, and tumor purity. (C) 
Comparisons of infiltration of 22 types of immune cells in the two subgroups. (D) Lollipop plots exhibited the relationship between DUSP10 
expression and TIICs. (E, F) Co-expression analysis of DUSP10 and 25 ICPGs. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 5. Contradistinction of genomic mutations between the two subgroups in the TCGA dataset. (A, B) Circos plots of low- 

and high-DUSP10 subgroups illustrated the amplifications and deletions of chromosomes, and boxplots exhibited a lower burden of copy 
number amplifications and deletions in the low-DUSP10 subgroup. (C, D) Waterfall plots revealed mutated genes in the low-DUSP10 (C) and 
high-DUSP10 (D) subgroups. (E, F) An association between DUSP10 expression and TMB levels. (G, H) Relationship between TMB level and 
the prognosis of patients with LGG (G) and the differential prognostic value in the two subtypes with distinct TMB level (H). *P < 0.05, **P < 
0.01, ***P < 0.001. 
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DUSP10 in three LGG cell lines (including SW-1783, 

SW-1088, and BT142) and a NHA cell line and 

discovered that DUSP10 expression was distinctly 

higher in the LGG cell lines when compared to the 

NHA cell line (Figure 7B, 7C). 

 

Subsequently, we inspected the interrelation between 

DUSP10 expression and cell proliferation in LGG. 

CCK-8 (Figure 7D) and colony formation assays 

(Figure 7E, 7F) displayed that the proliferative capacity 

of the SW1088 si-DUSP10 group was markedly 

reduced when compared to the si-NC group. Mean-

while, downregulating DUSP10 expression resulted in 

an obvious reduction in proliferation implemented by 

EdU assays in SW1088 cells (Figure 7G, 7H). In 

addition, we also observed that the cell cycle was 

 

 
 

Figure 6. Different responses to immunotherapy/chemotherapy of the two subgroups in the TCGA dataset. (A) Differential 

TIDE scores in the two subtypes. (B, C) Distinct proportions of non-responders and responders to immunotherapy between the two 
subgroups. (D) Prediction of response to chemotherapeutics drugs in different subtypes. 
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strongly influenced by the downregulation of DUSP10 

expression. After knocking down DUSP10 of SW1088 

ells, the number of cells in the S phase was reduced and 

the G0/G1 phase was elevated (Figure 7I, 7J). These 

results illustrate that DUSP10 play a crucial part in the 

cell proliferation in LGG. 

 

DISCUSSION 
 

In spite of great progress has been obtained in LGG 

surgery, radiotherapy, and chemotherapy, patients with 

LGG still have poor clinical prognosis [16–18]. Since 

the effect of traditional treatments for LGG patients 

remains limited, there is clearly needed to investigate 

the effective prognostic and therapeutic targets for these 

patients. DUSP10, a member of the MKPs subfamily, is 

a crucial factor in regulating cell proliferation. A 

growing number of studies have elaborated that 

increased DUSP10 expression may promote the 

malignant progression of several cancers. Nevertheless, 

the particular value of DUSP10 in patients with LGG 

remains unknown. Thus, we entirely investigated the  

 

 
 

Figure 7. In vitro experiments verification of DUSP10 in LGG. (A) Western blot analysis of DUSP10 expression in LGG tissues and 

corresponding para-carcinoma tissues. (B) Western blot and (C) qRT-PCR analysis of DUSP10 expression in NHA and LGG cell lines. (D) The 
cell viability of si-DUSP10-transfected and si-NC-transfected SW1088 cells by CCK-8 assays. (E, F) Effect of DUSP10 knockdown on colony 
formation was counted in SW1088 cells. (G, H) Representative images (G) and histogram analysis (H) of EdU assays after DUSP10 
knockdown in SW1088 cells. (I, J) Cell cycle assays were implemented to evaluate the cell distribution of the SW1088 cell lines transfected 
with si-DUSP10 or si-NC lentiviruses. *P < 0.05, **P < 0.01, ***P < 0.001. 
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connection between DUSP10 expression, clinical 

features, prognosis, biological functions, tumor 

immunity, gene variations, and responses to immuno-

therapy/chemotherapy in LGG. 

 

We employed the pan-cancer analysis of DUSP10 and 

detected that higher DUSP10 expression was linked to 

shorter survival time, higher ICPGs expression, and 

higher TMB burden in pan-LGG. We implemented 

survival analysis in the TCGA dataset to estimate the 

prognostic significance of DUSP10 in LGG and found 

that the high-DUSP10 subset owned poorer prognosis 

when compared to the low-DUSP10 subset. The 

proportion of OS status of LGG patients was also 

investigated, and the results revealed that up-regulated 

DUSP10 expression was powerfully connected with 

inferior OS status. Receiver operating characteristics 

(ROC) curves and AUC values were implemented to 

validate the accurateness of DUSP10 in forecasting the 

OS of LGG patients. Besides, Cox regression analyses 

affirmed that DUSP10 was an independent prognostic 

factor of LGG. Analogical results were discovered in 

the CGGA and GSE61374 datasets. 

 

GO-BP and KEGG analyses in the TCGA and CGGA 

datasets elucidated that DUSP10 expression was 

majorly associated with immune modulation, cell cycle, 

PI3K-Akt and JAK-STAT signaling pathways.  

 

 
 

Figure 8. The underlying biological mechanisms of DUSP10 in LGG. 
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Additionally, GSEA analysis explicated that the high-

DUSP10 subset was mainly linked to immune responses 

and cancer-associated signaling pathways. Thus, 

DUSP10 might promote the malignant progression of 

LGG by activating the cancer-connected signaling 

pathways. 

 

The TME mainly included tumor cells, tumor-related 

stromal cells, and immune cells [19]. Multiple studies 

confirmed that TME played a pivotal part in the 

malignant progression, prognosis, and immunotherapy 

response of LGG [20, 21]. Therefore, it is necessary to 

detect the connection between the DUSP10 expression 

and TME in LGG. The ssGSEA algorithm was 

employed to examine the difference in immune-

interrelated signatures between the two subsets in the 

TCGA and CGGA cohorts. The ESTIMATE and 

CIBERSORT algorithms were also implemented to 

identify the composition of TME and TIICs in the two 

subtypes. These results declared that DUSP10 

expression was forcefully associated with the immune 

infiltration in LGG. Moreover, the results of single-

cell analysis disclosed that DUSP10 was closely 

interrelated with the LGG immune microenvironment. 

Recently, immunotherapy has become a novel 

treatment for tumors by activating specific immune 

cells in the tissue microenvironment [22–24]. 

Particularly, ICB have become a new immunotherapy 

drug to treat different types of tumors and provided 

good curative effects [25–27]. Thence, we assessed the 

connection between DUSP10 expression and ICPGs 

expression in LGG patients and detected that DUSP10 

expression was positively related to the expression of 

some common ICPGs in the TCGA and CGGA 

datasets. Importantly, we detected that ICB therapy 

was more effective in high-DUSP10 subgroup than in 

low-DUSP10 subgroup by performing the TIDE 

algorithm. Additionally, the somatic mutation and 

CNA analyses suggested that the high-DUSP10 

expression subset owned higher TBM and CNA 

burden than the low-DUSP10 expression subset. Thus, 

DUSP10 might play a vital value in the immuno-

therapy of LGG patients. The underlying roles of 

DUSP10 in LGG were displayed in Figure 8. 

 

Currently, TMZ is the most commonly used in the 

treatment of glioma patients. However, its efficacy 

remains restrained. Thus, it is urgently needed to 

examine the new therapeutic drugs for LGG patients. 

The chemotherapeutics sensitivity analysis determined 

that the high-DUSP10 subset was more effective to 

chemotherapeutics, such as PIK-93, TGX221, AKT 

inhibitor VIII, MK-2206, bortezmib, and MG-13, than 

the low-DUSP10 subset. Hence, DUSP10 might 

represent a potential predictor for the chemosensitivity 

of patients with LGG. 

By knocking down the DUSP10, we ascertained that the 

LGG cell proliferation ability was significantly reduced. 

Therefore, DUSP10 may be an effective target for  

LGG treatment in the near future. However, DUSP10 

might be not an optimal drug target because of the 

formation of LGG involves activation of a variety of 

oncogenes and signaling pathways. The best therapeutic 

effect could be achieved only by systematically 

assessing the LGG patient’s condition and developing 

individualized treatment plan. Additionally, some 

limitations existed in our research. Firstly, more 

independent LGG cohorts should be included to check 

the prognostic significance of DUSP10 in LGG. 

Secondly, the specific functions of DUSP10 in LGG 

should be detected by exploiting in vivo studies in the 

future. 

 

CONCLUSION 
 

The study illustrated that DUSP10 was a powerful 

prognostic factor and strongly related to cellular 

proliferation in LGG. DUSP10 might become an 

effectual target/therapeutic agent for patients with LGG. 

 

METHODS 
 

Data gathering and collating 

 

The DUSP10 expression, survival, clinical, and TMB 

data in 33 tumors were attained from the TCGA 

database. Additionally, the DUSP10 expression data of 

normal tissue was acquired from Genotype-Tissue 

Expression (GTEx). 

 

Adjacently, three independent LGG cohorts, TCGA, 

CGGA (CGGA_325), and GSE61374 cohorts, were 

employed in this research. The mRNA expression, 

survival, and clinical data of LGG samples from the 

three independent cohorts were obtained from TCGA, 

CGGA, and Gene Expression Omnibus (GEO) 

databases. RNA-seq expression data from TCGA and 

CGGA cohorts in fragments per kilobase million 

format, was transformed into transcripts per kilobase 

million values and then transformed by log2. Similarly, 

the robust multichip averaging analysis (RMA)-

processed values of GSE61374 were transformed by 

log2 to permit easier comparison. Additionally, the 

single-cell RNA-seq dataset GSE167960 was acquired 

from GEO website. 

 

Inclusion criteria for samples 

 

LGG samples were included if they had: (1) WHO 
grade information; (2) gene expression information; (3) 

OS > 1 month. In total, 477 (Supplementary Table 1), 

170 (Supplementary Table 2), and 137 (Supplementary 
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Table 3) LGG samples were filtered out from TCGA, 

CGGA, and GEO datasets, respectively. Additionally, 

we included LGG samples with OS of < 1 month for 

pan-cancer analysis of DUSP10 to assure the 

consistency of survival information in 33 tumor types. 

 

Prognostic role of DUSP10 

 

LGG samples were categorized into high-DUSP10 and 

low-DUSP10 subsets in line with median values of 

DUSP10 expression in the three cohorts. The KM 

analysis was exploited to determine the OS of LGG 

patients in high-DUSP10 and low-DUSP10 subsets. 

Additionally, the survival state ratio, ROC curves, and 

AUC values were employed to check the exactness of 

DUSP10 expression in forecasting the prognosis of 

LGG patients in the three datasets. Afterwards, we 

employed Cox regression analyses in the three datasets 

to examine whether DUSP10 expression was an 

independent biomarker of LGG patients. 

 

Functional enrichment and gene set enrichment 

analysis 

 
Under the criteria of |log2FC| of > 0.5 and false-

discovery rate (FDR) of < 0.05 [28, 29], we exploited R 

package limma to select the DEGs between the low-

DUSP10 and high-DUSP10 subsets [30]. On the 

grounds of DEGs, we executed GO-BP and KEGG 

analyses by utilizing R package clusterProfiler [31]. 

GSEA analysis was implemented to detect the 

obviously enriched molecular pathways in the two 

subsets [32]. With the standards of normalized 

enrichment score (NES) >1, p < 0.05, and FDR < 0.25, 

we identified the significant enriched molecular 

pathways in the two subsets. 

 

Immunological characteristics and single-cell 

analysis 

 

The immunological features including immune 

signatures, abundances of stromal and immune cells, 

and ICPGs expression level were evaluated. First,  

the ssGSEA algorithm was applied to ascertain  

the differential abundance of 29 immune-associated 

signatures, which were obtained from previous studies 

[33, 34], in low-DUSP10 and high-DUSP10 subsets. 

The ESTIMATE algorithm was conducted to 

investigate the abundance of immune cells, stromal 

cells, and tumor purity according to the expression 

profiles of LGG patients [35]. Four kinds of scores, 

including ESTIMATE score (representing nontumor 

composites), stromal score (representing the abundance 
of stromal cells), immune score (representing the 

abundance of immune cells), and tumor purity, were 

measured. Whereafter, the CIBERSORT algorithm was 

executed to quantify the infiltration level of TIICs in 

line with the gene expression data of LGG patients [36]. 

Additionally, we selected 25 ICPGs according  

to previous research [37], and investigated their 

correlation with DUSP10 expression. The GSE167960 

dataset was exploited to inspect the correlation between 

DUSP10 and LGG immune microenvironment. 

 

Gene variation analysis 

 

The RCircos tool was utilized to recognize and exhibit 

the conspicuous deletions and amplifications in the 

whole genome between low- and high- DUSP10 

expression subgroups [38]. We performed the Maftools 

and GenVisR [39, 40] to account for and display 

variation types and frequencies of genes between low-

DUSP10 and high-DUSP10 subgroups. The TMB, as a 

newly developing biomarker for forecasting the 

response to immunotherapy, reveals the total number of 

nonsynonymous mutations. The conjunction between 

DUSP10 expression and TMB level in 33 kinds of 

cancer was ascertained by performing R package fmsb. 

Afterwards, the association between the DUSP10 

expression and TMB level was detected by conducting 

the R package ggplot2 in the independent LGG TCGA 

dataset. 

 

Evaluation of DUSP10 expression and treatment 

responses 

 

The TIDE algorithm was implemented to detect the 

reaction of LGG patients to immunotherapy according 

to the expression data of LGG patients. Moreover, the 

sensitivity difference to several chemotherapeutic drugs, 

such as PI3K/AKT inhibitors (PIK-93, TGX221, AKT 

inhibitor VIII, and MK2206) and a proteasome inhibitor 

(bortezomib and MG-132), between high-DUSP10 and 

low-DUSP10 subtypes was explored by using R 

package pRRophetic [41]. 

 

Cell culture and transfection 

 

Three LGG lines, including SW1088, SW1783, and 

BT142, were obtained from the American Type Culture 

Collection. Normal human astrocyte (NHA) cell line 

was purchased from Culture Collection of the Chinese 

Academy of Sciences (Shanghai, China). SW1783 and 

SW1088 cell lines were incubated with Leibovitz’s L-

15 medium and 10% fetal bovine serum (Gibco). 

BT142 and NHA cell lines were incubated with 

Dulbecco’s modified Eagle’s medium/F12 medium. All 

cell lines were incubated at 5% CO2 and 37°C. SW1088 

cell lines were transfected with lentiviral vector 
containing DUSP10 shRNA (5′-CAATGAACCAA 

GCCGAGTGAT-3′) or negative control (NC) vector at 

a multiplicity of infection of 10. Polybrene was 
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employed to elevate transfection efficiency and 

puromycin was applied to filter out positive cells. 

 

Western blot analysis 
 

LGG and para-cancerous tissue samples (n = 6 each) 

were gathered from the Second Affiliated Hospital of 

Nanchang University. We extracted brain tissues and 

cell lysates by exploiting radioimmunoprecipitation 

assay buffer (Solarbio, China) mixed with proteinase 

inhibitors. Then, we separated lysates by utilizing 10% 

SDS-PAGE and transferred it to PVDF membranes. 

Then, the membranes were incubated with primary 

antibodies, including DUSP10 (1:1000, DF4694 affinity 

Biosciences, Proteintech, China) and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) (1:20000, 60004-

1-lg, Proteintech, China), and the relevant secondary 

antibodies. Eventually, the bands on the membranes 

were visualized by conducting a GV6000M imaging 

system (GelView 6000pro).  

 

Quantitative real-time PCR 
 

Total RNA was isolated from cells with the Simply P 

Total RNA Extraction Kit (Bioflux, China) and reverse-

transcribed it into complementary DNA with HiScript 

III-RT SuperMix (Vazyme, China). Subsequently, the 

values were managed with the 2−ΔΔCT method. Primer 

sequences of genes were as follows: DUSP10 forward, 

5′-ATACCAATGAACCAAGCCGAGT-3′; DUSP10 

reverse, 5′-TCTTGGAGCTGGAGGGAGTTG-3′; 

GAPDH forward, 5′-GGTGTGAACCATGAGA 

AGTATGA-3′; and GAPDH reverse, 5′-GAGTCCTT 

CCACGATACCAAAG-3′. 

 

CCK-8 assay 
 

Transfected SW1088 cells (2 × 103 peer well) were 

plated in 96-well plates and cultured for 5 days. Cell 

proliferation was examined by Cell Counting Kit 8 

assay (Glpbio, GK10001) according to the protocol. 

 

Colony formation assay 
 

Transfected SW1088 cells were seeded in 6-well plates 

at 2 × 103 peer well and incubated for 2 weeks. 

Subsequently, 0.1 % crystal violet stain solution was 

implemented to stain the cells, and the number of 

colonies was quantified by ImageJ. 

 

EdU assay 
 

Transfected SW1088 cells (2 × 104) were seeded in 24-

well plates and incubate for 3 days. Subsequently, the 

cells were cultured with EdU reagent for 2 h and 4% 

paraformaldehyde and 0.5% Triton X-100 were 

employed to fix the cells. The Hoechst staining was 

exploited to stain the cells. The EdU incorporation rate 

was counted by ImageJ. 

 

Cell cycle analysis 

 

Transfected SW1088 cells were fixed with 70% ethanol 

at 4°C overnight. Next, the cells were stained with 

RNase A containing propidium iodide (Suzhou, China). 

We ascertained the cell cycle distribution by conducting 

flow cytometry. 

 

Statistical analysis 

 

The KM analysis was executed to differentiate the 

prognosis between high-DUSP10 and low-DUSP10 

subsets by using a two-sided log-rank test. The veracity 

of DUSP10 expression in predicting prognosis was 

verified by AUC values and ROC curves. The 

independent prognostic significance of DUSP10 was 

checked by exploiting Cox regression analyses. 

Comparison of these immune-associated factors, 

including 29 immune-connected signatures, TIICs, 25 

ICPGs, TMB, and CNA burden, between the two 

subtypes was measured by the Student’s t test. 

Additionally, Pearson’s or Spearman’s correlation test 

was employed to examine the association between 

distributed variables. The sensitivity difference to 

anticancer drugs between the two subtypes was 

estimated by conducting the Wilcoxon signed-rank test. 

We performed all statistical analyses in R programming, 

version 4.1.0, SPSS Statistics, and GraphPad Prism 8. 

P < 0.05 was deemed to be significant.  

 

Availability of data and materials 

 

The data used in the study can be acquired in the TCGA 

(https://portal.gdc.cancer.gov/), CGGA (http://www. 

cgga.org.cn/), and GEO (https://www.ncbi.nlm.nih.gov/ 

geo/) websites. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

 

Supplementary Figure 1. Flow diagram of overall research. (A) Pan-cancer analysis. (B) Clinical features. (C) Prognosis analysis. (D) 

Biological functions. (E) Immune features. (F) Genetic mutations. (G) Experimental verification. (H) Treatment response of DUSP10 in LGG. 
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Supplementary Figure 2. Clinical correlation analysis of DUSP10 in CGGA. (A) Association between DUSP10 expression and clinical 
traits of LGG in CGGA. (B) Variance analysis of DUSP10 expression in different clinical features (including age, gender, grade, and 1p/19q, 
IDH, and MGMT statuses) in the CGGA dataset. (C) Prognostic analysis of high-DUSP10 and low-DUSP10 subtypes in the CGGA dataset. (D) 
Distribution of risk score, OS, and OS status of high-DUSP10 and low-DUSP10 subtypes in the CGGA dataset. (E) Different proportions of the 
living situation between the two subtypes. (F) ROC curves representing the predictive role of the risk score in CGGA. (G, H) Univariate and 
multivariate Cox analyses of DUSP10 expression and clinicopathological characteristics in CGGA. *P < 0.05, **P < 0.01, ***P < 0.001. 
 



www.aging-us.com 5692 AGING 

 
 

Supplementary Figure 3. Clinical correlation analysis of DUSP10 the GSE61374 dataset. (A) Association between DUSP10 
expression and clinical traits of LGG the GSE61374 dataset. (B) Variance analysis of DUSP10 expression in different clinical features 
(including age, gender, grade, and 1p/19q, IDH, and MGMT statuses) in the GSE61374 dataset. (C) Prognostic analysis of high-DUSP10 and 
low-DUSP10 subtypes in the GSE61374 dataset. (D) Distribution of risk score, OS, and OS status of high-DUSP10 and low-DUSP10 subtypes 
in the GSE61374 dataset. (E) Different proportions of the living situation between the two subtypes. (F) ROC curves representing the 
predictive role of the risk score in GSE61374. (G, H) Univariate and multivariate Cox analyses of DUSP10 expression and clinicopathological 
characteristics in GSE61374. *P < 0.05, **P < 0.01, ***P < 0.001. 
 



www.aging-us.com 5693 AGING 

 
 

Supplementary Figure 4. Biological functions of DUSP10 in LGG in CGGA. (A) DEGs between the low-DUSP10 and high-DUSP10 
expression LGG subgroups. (B, C) The GO-BP (B) and KEGG (C) analyses for DUSP10 in LGG patients in the CGGA dataset. (D) GSEA in the 
CGGA dataset. 
 



www.aging-us.com 5694 AGING 

 
 

Supplementary Figure 5. Different TME and immunological characteristics of the low- DUSP10 and high-DUSP10 subtypes 
in CGGA. (A, B) Association between DUSP10 expression and 29 immune-associated signatures, ESTIMATE, immune, stromal scores, and 
tumor purity. (C) Comparisons of infiltration of 22 types of immune cells in the two subgroups. (D) Lollipop plots exhibited the relationship 
between DUSP10 expression and TIICs. (E, F) Co-expression analysis of DUSP10 and 25 ICPGs. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Supplementary Figure 6. Single-cell analysis of DUSP10 in GSE167960. (A, B) The cell types in LGG immune microenvironment and 
the expression distribution of DUSP10. (C, D) Expression levels of DUSP10 in immune cells. 
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Supplementary Tables 
 

Supplementary Table 1. Clinical features of LGG patients from TCGA. 

Clinical features  Total (477) % 

Age Age ≤ 45 287 60.17% 

 Age >45 190 39.83 % 

Gender Female 216 45.28% 

 Male 261 54.72% 

Grade WHO II 231 48.43% 

 WHO III 246 51.57% 

1p/19q Non-codel 321 67.30% 

 Codel 156 32.70% 

IDH Mutant 389 81.55% 

 Wildtype 85 17.82% 

 Unknow 3 0.63% 

MGMT Unmethylated 82 17.19% 

 Methylated 395 82.81% 

 

 

Supplementary Table 2. Clinical features of LGG patients from CGGA. 

Clinical features  Total (170) % 

Age Age ≤ 45 129 75.88% 

 Age >45 41 24.12% 

Gender Female 65 38.24% 

 Male 105 61.76% 

Grade WHO II 97 57.06% 

 WHO III 73 42.94% 

1p/19q Non-codel 113 66.47% 

 Codel 55 32.35% 

 Unknow 2 1.18% 

IDH Mutant 125 73.53% 

 Wildtype 44 25.88% 

 Unknow 1 0.59% 

MGMT Unmethylated 70 41.18% 

 Methylated 84 49.41% 

 Unknow 16 9.41% 
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Supplementary Table 3. Clinical features of LGG patients from GSE61374. 

Clinical features  Total (137) % 

Age Age ≤ 45 83 60.58% 

 Age >45 54 39.42% 

Gender Female 53 38.69% 

 Male 84 61.31% 

Grade WHO II 61 44.53% 

 WHO III 76 55.47% 

1p/19q Non-codel 100 72.99% 

 Codel 37 27.01% 

IDH Mutant 115 83.94% 

 Wildtype 22 16.06% 

MGMT Unmethylated 38 27.74% 

 Methylated 98 71.53% 

 Unknow 1 0.73% 

 


