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INTRODUCTION 
 
Liver cancer is a worldwide disease, the fifth most 
common tumor, and the second most deadly cancer [1]. 
Hepatocellular carcinoma (HCC) accounts for the 
majority of primary liver cancers and has the 
characteristics of ease of transfer, high mortality, and a 

high recurrence rate [2], as well as a poor prognosis [3]. 
Most patients miss the optimal treatment time due to a 
late diagnosis. What we know is that HCC can be 
diagnosed by laboratory tests of serum biomarkers, 
including alpha-fetoprotein, and imaging techniques, 
including ultrasound, CT, and MRI imaging, and 
biopsy. Recently, advances have been made in the 
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ABSTRACT 
 
Hepatocellular carcinoma (HCC) is an ongoing challenge worldwide. Zinc finger protein 765 (ZNF765) is an 
important zinc finger protein that is related to the permeability of the blood-tumor barrier. However, the role 
of ZNF765 in HCC is unclear. This study evaluated the expression of ZNF765 in hepatocellular carcinoma and the 
impact of its expression on patient prognosis based on The Cancer Genome Atlas (TCGA). Immunohistochemical 
assays (IHC) were used to examine protein expression. Besides, a colony formation assay was used to examine 
cell viability. We also explored the relationship between ZNF765 and chemokines in the HCCLM3 cells by qRT-
PCR. Moreover, we examined the effect of ZNF765 on cell resistance by measurement of the maximum half-
inhibitory concentration. Our research revealed that ZNF765 expression in HCC samples was higher than that in 
normal samples, whose upregulation was not conducive to the prognosis. The results of GO, KEGG, and GSEA 
showed that ZNF765 was associated with the cell cycle and immune infiltration. Furthermore, we confirmed 
that the expression of ZNF765 had a strong connection with the infiltration level of various immune cells, such 
as B cells, CD4+ T cells, macrophages, and neutrophils. In addition, we found that ZNF765 was associated with 
m6A modification, which may affect the progression of HCC. Finally, drug sensitivity testing found that patients 
with HCC were sensitive to 20 drugs when they expressed high levels of ZNF765. In conclusion, ZNF765 may be 
a prognostic biomarker related to cell cycle, immune infiltration, m6A modification, and drug sensitivity for 
hepatocellular carcinoma. 
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treatment of HCC [4, 5]. However, the survival and cure 
rates of patients with hepatocellular carcinoma are still 
not optimistic. Biomarkers, as biochemical indicators of 
changes in the structure or function of human organs, 
are often used to diagnose and stage diseases or to 
evaluate the usefulness of drugs and treatments [6]. 
Biomarkers of HCC that have been discovered for 
clinical use are mainly serum biomarkers such as alpha-
fetoprotein. But these biomarkers are still not perfect for 
further efficient diagnosis and treatment. Exploring 
effective biomarkers for HCC has thus become the 
current task in order to improve the efficiency of 
diagnosis and optimize the treatment effect. 
 
HCC is a complex ecosystem containing immune-
related cells. The successful application of immune 
checkpoint inhibition in tumors has confirmed the 
important influence of the tumor microenvironment on 
tumor development [7]. Approximately 30% of early-
stage HCCs have genomic evidence of immune 
activation, while 25% have no immune infiltration [8]. 
Understanding the interaction between cancer cells and 
their microenvironment is essential for developing new 
therapies and identifying biomarkers. 
 
As the largest transcription factor family in the human 
genome, the ZNF family is widely involved in various 
biological processes in the human body. As the largest 
transcription factor family, zinc finger (ZNF) 
transcription factors are characterized by finger-like 
DNA domains, which require one or more zinc ions to 
stabilize the structure. At the moment, there is growing 
evidence that ZNF plays a significant role in HCC, 
ultimately regulating cell proliferation, apoptosis, 
invasion, and metastasis by adjusting the transcription 
of downstream target genes at a variety of regulatory 
levels. It is well on its way to becoming a new tumor 
biomarker and a therapeutic target in the treatment of 
HCC. It has been proven that some ZNF proteins have 
an effect on HCC. For example, ZNF384 can boost the 
proliferation of cancer cells [9], ZNF-148 can induce 
apoptosis of HCC cells and have a tumor suppressor 
effect [10], ZNF32 can escape apoptosis [11], and 
ZNF687 can induce HCC recurrence by adjusting 
hematopoietic cells in their proliferation and 
differentiation [12, 13], and so on. Considering that the 
ZNF family has such a powerful role in the occurrence 
and development of HCC, we selected ZNF765 (Zinc 
Finger Protein 765), an unexplored object, to be the 
object of study, trying to explore whether it can become 
an independent prognostic biomarker of HCC. 
 
ZNF765 is a protein-coding gene in the ZNF family that 
is found on human 19q13.42. However, its role in 
cancer is rarely reported. One article correlated with 
cancer mentioned that ZNF765 was closely related to 

the regulation of the blood-tumor barrier. A significant 
mutation of ZNF765 has been found in chromophobe 
renal cell carcinoma, suggesting its potential role in 
kidney cancer [14, 15]. The mechanism of ZNF765 in 
HCC has not been reported, and its relationship with the 
prognosis is still unclear. In our research, it was found 
that ZNF765 can affect the development of HCC by 
affecting immune cells. Thus, we started from this 
point, trying to prove that ZNF765 can serve as a 
biomarker for HCC. 
 
We used integrated bioinformatics methods, functional 
analysis, and some experimental verification in our 
article (Figure 1). We evaluated the expression of 
ZNF765 in HCC through a variety of public databases 
and clinical samples. The Wilcoxon rank sum test was 
exploited to study the relation between ZNF765 
expression and clinicopathological characteristics in 
HCC. The influence of ZNF765 expression on HCC 
prognosis was examined by the Kaplan-Meier method. 
We investigated the transcriptome alterations and 
functional networks relevant to ZNF765 in HCC. The 
effect of ZNF765 expression on tumor immune 
infiltration is also in the process of being analyzed. The 
drug sensitivity test for ZNF765 is also covered. Our 
work revealed that ZNF765 is a new biomarker of HCC 
that can contribute to prognosis and treatment. 
 
RESULTS 
 
ZNF765 is upregulated in human HCC tissues 
 
To dig out ZNF765 expressions in various cancerous 
and normal tissues, some of the works listed below were 
performed. First, our study analyzed the TCGA-RNA 
sequence data in TIMER. It proclaimed that, in 
comparison with normal tissues, ZNF765 had an 
increased expression in a wide range of cancer tissues. 
It was also true in LIHC (Supplementary Figure 1). 
Then, the Wilcoxon rank sum test was used to generate 
differential expression maps and paired differential 
expression maps to examine the specific circumstances 
of ZNF765 expression between normal and tumor 
samples (Figure 2A, 2B). What’s more, we used ICGC, 
another database, to conduct the same analysis (Figure 
2C) and got a similar outcome to our preliminary result 
in TCGA. To sum up, in the whole transcriptome 
sequencing (RNA-seq) dataset, ZNF765 was clearly 
overexpressed in tumor tissues. Moreover, we used the 
HCMDB online website to draw the expression box 
plots of ZNF765 in primary tumor and lung metastatic 
tumor tissues. As a result, ZNF765 was found to be 
significantly more abundant in metastatic cancer than in 
primary cancer (Figure 2D). Furthermore, analysis of 10 
HCC cohorts in the HCCDB database clearly showed 
that ZNF765 mRNA expression in HCC tissues was 
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obviously higher than that in other tissues (Table 1). 
Besides, we used clinical samples to verify our 
preliminary results. IHC was adopted to test the protein 
content of ZNF765, and its results indicated that the 

protein level of ZNF765 was elevated in 40 pairs of 
HCC tissues (Figure 2E). In the colony formation assay, 
decreased expression of ZNF765 resulted in a reduced 
colony-forming capacity of HCC cells (Figure 2F, 2G). 

 

 
 
Figure 1. Study workflow. ZNF765 is a prognostic biomarker of hepatocellular carcinoma associated with cell cycle, immune infiltration, 
m6A modification, and drug susceptibility. 



www.aging-us.com 6182 AGING 

In the Transwell Assay, ZNF765 knockdown 
significantly reduced the invasion and migration 
abilities of HCCLM3 cells (Figure 2H). Anyway, our 
results proved the overexpression of ZNF765 in HCC 
tissues, which may be related to HCC progression. 

Relationship between ZNF765 expression and 
clinicopathological variables in HCC 
 
With the aim of investigating the relationship between 
ZNF765 expression and HCC sufferers’ 

 

 
 
Figure 2. The expression of ZNF765 in HCC and other cancers. (A) ZNF765 mRNA levels in tumor and normal tissues based on the 
TCGA database (p = 9.061e-12). (B) Paired differential expression map of ZNF765 between 72 pairs of HCC tissues and normal tissues based 
on the TCGA database (p = 3.845e-08). (C) The mRNA expression level of ZNF765 in tumor and normal tissues in the ICGC (p = 2.22e-16). (D) 
HCMDB analysis of aberrant expression of ZNF765 in HCC patients. (E) Typical images of immunohistochemistry (IHC) in 40 pairs of HCC 
tissues showing the protein expression of ZNF765 in HCC and adjacent nontumor tissues. Colonies formed by HCCLM3 (F) and SMCC7721 
(G) cells transfected with control shRNA or shRNA targeting ZNF765. The panels are a quantification of the results of the colony formation 
assay (**p < 0.01). (H) Representative data from Transwell migration and invasion assays performed with the ZNF765 knock-down cells. 
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Table 1. Analysis of mRNA expression of ZRANB1 in the HCCDB database. 

Dataset p value Type Nums Mean STD IQR 

HCCDB1 9.55E-08 
HCC 100 6.199 0.6365 0.9087 

Adjacent 97 5.794 0.3365 0.3778 

HCCDB3 1.32E-18 

HCC 268 0.1659 0.09024 0.084 
Adjacent 243 0.1112 0.03066 0.038 
Cirrhotic 40 0.1485 0.04295 0.07175 
Healthy 6 0.1038 0.01545 0.006 

HCCDB4 0.0005271 
HCC 240 6.639 0.1155 0.1243 

Adjacent 193 6.602 0.1046 0.1279 

HCCDB11 0.02634 
HCC 88 6.748 0.7977 1.139 

Adjacent 48 7.083 0.8452 1.146 

HCCDB12 0.2862 
HCC 81 5.348 0.9213 1.023 

Adjacent 80 5.477 0.5696 0.4129 

HCCDB13 0.000521 
HCC 228 4.141 0.1739 0.2127 

Adjacent 168 4.087 0.1357 0.1683 

HCCDB15 0.0006856 
HCC 351 6.713 0.8377 1 

Adjacent 49 6.436 0.4569 0.42 

HCCDB16 0.4082 
HCC 60 9.822 0.7276 0.6234 

Adjacent 60 9.926 0.6489 0.5297 

HCCDB17 0.0000512 
HCC 115 7.049 0.1159 0.1325 

Adjacent 52 7.141 0.1356 0.185 

HCCDB18 2.47E-27 
HCC 212 0.9681 0.3645 0.48 

Adjacent 177 0.6241 0.1942 0.2 

Abbreviations: STD: standard deviation; IQR: Inter Quartile Range. Bold values indicate p values < 0.05. 
 
clinicopathological features based on the TCGA 
database, we selected relevant data for analysis and 
produced a series of related box-plots using R software. 
We found that the expression of ZNF765 was higher in 
the ≤ 61 group (Figure 3A). And the expression of 
ZNF765 in the two genders was different (Figure 3B). 
In addition, the expression of ZNF765 increased with 
the grade (Figure 3C). Simultaneously, we found that 
the expression of ZNF765 was also high in stages 1, 2, 
and 3 (Figure 3D). Besides, ZNF765 expression was 
associated with tumor size (Figure 3E). However, the 
expression of ZNF765 was not correlated with N 
(lymph node metastasis) (Figure 3F). For the purpose of 
analyzing the relationship between ZNF765 expression 
and poor clinicopathologic variables, we further 
adopted logistic regression. And the consequences 
suggested that high ZNF765 expression was notably 
related to age (OR = 0.55 for >60 vs. 60), gender (OR = 
1.78 for female vs. male), grade (OR = 4.03 for III vs. 
I), stage (OR = 1.75 for III vs. I), and T (OR = 1.37 for 
T2 vs. T1), but not related to N (OR = 3.05 for N1 vs. 

N0) (Table 2). The above results indicated that ZNF765 
expression was closely correlated with 
clinicopathological characteristics. 
 
ZNF765 expression is an independent prognostic 
factor that is associated with poor prognosis in HCC 
patients 
 
We adopted TCGA-LIHC data to explore how 
overexpressed ZNF765 influences the prognosis of 
HCC patients. According to the results, we found that 
high expression of ZNF765 could result in a poor 
prognosis (Figure 4A). Designed to dive into the 
prognostic value of ZNF765 expression in HCC, 
Kaplan-Meier Plotter tools were applied to detect the 
prognosis of ZNF765. The Kaplan-Meier curve and log 
rank test analysis revealed that the increased ZNF765 
level was significantly related to overall survival (OS), 
relapse-free survival (RFS), progression-free survival 
(PFS), and disease-specific survival (DSS) 
(Supplementary Figure 2A–2D) (p < 0.05). The same 
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analysis on the HCCDB website also presented a similar 
result (Supplementary Figure 2E). High mRNA levels 
of ZNF765 were forecast to have low OS, RFS, PFS, 
and DSS. The area under the ROC curve was used to 
assess the sensitivity and specificity of ZNF765 

expression in predicting survival outcomes (Figure 4B). 
The results displayed that the area under the ROC curve 
(AUC) for 1-, 3-, and 5-years was 0.668, 0.611, and 
0.540, respectively. Univariate and multivariate analysis 
using the Cox regression model illustrated that ZNF765 

 

 
 
Figure 3. Box plots exploring the relationship between ZNF765 expression and clinicopathological characteristics. (A) Age; 
(B) Gender; (C) Grade; (D) Stage; (E) T (size of the tumor); (F) N (lymph node metastasis). 
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Table 2. Logistic analysis of the association between ZNF765 expression and clinical characteristics. 

Clinical characteristics Total (N) Odds ratio in ZNF765 expression p value 

Age (>60 vs. ≤60) 376 0.55 (0.37–0.84) 0.005 
Gender (Female vs. Male) 377 1.78 (1.15–2.78) 0.01 
Grade (III vs. I) 372 4.03 (2.06–8.18) <0.001 
Stage (III vs. I) 353 1.75 (1.03–2.98) 0.038 
T (T2 vs. T1) 374 1.37 (0.83–2.27) 0.215 
N (N1 vs. N0) 261 3.05 (0.38–62.07) 0.337 

Abbreviations: T: tumor; N: node; M: metastasis; Bold values indicate p values < 0.05. 
 
expression is an independent prognostic factor for the 
survival of HCC patients (Supplementary Table 1). 
Additionally, the forest plot also consistently showed 
the equivalent result (Figure 4C). Besides, we used the 
UALCAN website to make an analysis among 
expressions of ZNF765, some clinicopathological 
features, and survival probability. And we found that 
when clinicopathological features stayed the same, high 
expression of ZNF765 always led to a poor survival 
probability (Supplementary Figure 2F–2H). In 
conclusion, ZNF765 was an independent prognostic 
factor for HCC. 
 
The relationship between ZNF765 methylation and 
its expression 
 
DNA methylation, an essential process in the epigenetic 
modification of the genome, has something to do with 
the disease process [16]. Methylation, in particular, has 
the potential to cause genome instability and stimulate 
correlated genes. We attempted to investigate whether 
ZNF765 DNA methylation could affect its expression in 
LIHC and elucidate the relationship between the two. 
Through the MethSurv web platform, we made a DNA 
methylation heatmap of ZNF765 that is shown in Figure 
5A. Most sites are hypomethylated (Figure 5A). Then, 
we further explored the connection between ZNF765 
methylation and gene expression with cBioPortal, and 
the result indicated that gene methylation negatively 
correlated with ZNF765 expression (Spearman = -0.18, 
p = 6.037e-4; Pearson = −0.11, p = 0.0264) (Figure 5B). 
The methylation levels of ZNF765 in LIHC samples 
with different clinicopathological classifications were 
analyzed by UALCAN. The DNA methylation level of 
ZNF765 in tumor samples from LIHC was slightly 
lower than that of normal samples (p < 0.001; Figure 
5C). When it came to age, the methylation level 
decreased in the 41-60 and 61-80 groups (Figure 5D). In 
addition, methylation levels of ZNF765 decreased 
gradually as their grade or nodal metastasis status 
increased (Figure 5E, 5F). Besides, the ZNF765 
promoter methylation level was also detected, which 
showed that the methylation level of the ZNF765 

promoter in LIHC tissues was lower than that in normal 
tissues (Figure 5G). Therefore, the decreased 
methylation level of ZNF765 may lead to an increase in 
the expression level of ZNF765. 
 
Pathway enrichment analysis of ZNF765 in HCC 
 
To understand the biological importance of ZNF765 in 
HCC in depth, we applied the function module of 
LinkedOmics. We did enrichment analyses on the 
website. The results of functional enrichment and GO 
analysis indicated that ZNF765 was functionally related 
to the cell cycle and DNA replication. Some enrichment 
terms can prove this conclusion, including chromosome 
segregation, DNA replication, cell cycle checkpoint, G0 
to G1 transition, cell cycle G2/M phase transition, and 
meiotic cell cycle (Supplementary Figure 3A). Besides, 
KEGG pathway analysis showed that there was an 
enrichment of genes extremely related to the cell cycle 
(Supplementary Figure 3B). For further investigation on 
the biological meaning of ZNF765 in HCC, we 
employed GSEA to analyze the datasets based on the 
TCGA LIHC with different expression groups of 
ZNF765. 139 of 178 pathways were up-regulated, and 
81 of them met the conditions of NOM p < 0.05, FDR < 
0.05, and NES > 1.7. The pathways associated with 
promoting cell adhesion and tumorigenesis in the 
ZNF765 overexpression group included FOCAL 
adhesion, the pathway in cancer, the MAPK signaling 
pathway, and the P53 signaling pathway. The immune 
infiltration pathways included B cell receptor signaling, 
T cell receptor signaling, leukocyte transendothelial 
migration, FC-γ-R-mediated phagocytosis, and the 
TGF-β signaling pathway. Cell cycle terms included 
cell cycle, DNA replication, and RNA degradation. The 
enrichment results are summarized in Supplementary 
Figure 3C. 
 
ZNF765 Co-expression networks in HCC 
 
To better understand the biological effects of ZNF765 
in HCC in depth, we applied LinkedOmics, aiming to 
test the ZNF765 co-expression genes in HCC. There are 
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13490 genes that have a significant positive correlation 
with ZNF765, and they are represented by dark red 
dots. Meanwhile, 6432 genes that negatively correlated 
with ZNF765 were represented by dark green dots 
(Figure 6A). In heatmaps (Figure 6B, 6C), 50 notable 
gene sets with observably positive and negative 

correlations with ZNF765 were marked and listed. 
Then, to dig into the functions of ZNF765, we further 
selected the top 500 co-expressed genes among genes in 
the Volcano Plot based on Spearman’s coefficient, and 
then we analyzed these genes with the STRING 
database and visualized the result with Cytoscape 

 

 
 
Figure 4. The effectiveness of ZNF765 in predicting prognosis. (A) HCC patients with a lower expression level of ZNF765 had 
favorable a prognosis (p = 0.024). (B) ROC curves for the 1-, 3-, and 5-year survival according to the expression level of ZNF765. 
Abbreviation: AUC: the area under the curve; ROC: receiver operating characteristic. (C) A forest plot of the results of the multivariate 
analysis. *p < 0.05; **p < 0.01; ***p < 0.001. Abbreviations: HR: hazard ratio; CI: confidence interval; T: tumor; N: node, M: metastasis; OS: 
overall survival; AIC: Akaike’s information criterion. 
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(Figure 6D). Then we chose these co-expressed genes to 
do our significant part, the PPI network, using 
Cytoscape (the MCODE plug-in) (Figure 6E). From the 

above results, we could tell that the module with the 
highest score consisted of 15 genes. These 15 genes 
were regarded as the hub genes because they were 

 

 
 
Figure 5. DNA methylation of ZNF765 in HCC. (A) Heatmap for ZNF765 in HCC. (B) The correlation between ZNF765 methylation and 
its expression level (n = 521). (C) A boxplot of ZNF765 promoter methylation levels in normal and HCC samples. (D) Boxplot demonstrating 
the relative promoter methylation level of ZNF765 in healthy people of any age or HCC patients aged 21–40, 41–60, 61–80, or 81–100 
years. (E) A boxplot depicting the relative promoter methylation level of ZNF765 in healthy people and HCC patients of different genders. 
(F) Boxplot showing the relative promoter methylation level of ZNF765 in normal individuals or HCC patients in grades 1, 2, 3, or 4. (G) 
Boxplot depicting the relative promoter methylation level of ZNF765 in normal individuals with any nodal metastasis status or HCC patients 
with N0 and N1 nodal metastasis. ***p < 0.001. 
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marked in yellow. Since ARHGAP11A, ECT2, and 
ANLN are known to be closely correlated to cell growth 
or the cell cycle, based on the above analysis results, we 
inferred that the effect of ZNF765 on the survival of 
patients with hepatocellular carcinoma may be relevant 
to the cell cycle. 

ZNF765 is correlated with tumor purity, immune 
infiltration and escape in HCC 
 
Tumor occurrence and development were linked to the 
number of immune cells infiltrated [17]. To determine 
whether ZNF765 expression is correlated with immune 

 

 
 
Figure 6. Co-expression genes and protein-protein interaction (PPI) network of ZNF765 in HCC. (A) A correlation analysis was 
used to assess correlations between ZNF765 and genes differentially expressed in HCC. Red shows positively correlated genes, and green 
indicates negatively correlated genes. False discovery rate, FDR < 0.0. (B, C) Heat maps show genes positively and negatively 
correlated with ZNF765 in HCC (Top 50). (D) The most significant module selected by the MCODE plugin (degree cut-off = 2, node score cut-
off = 0.2, k-core = 2, and max. Depth = 100). (E) Hub genes. 
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cell infiltration, TIMER was adopted to evaluate the 
relevance between the two. Our outcomes indicated that 
ZNF765 expression showed a slightly positive connection 
with the purity of HCC tumors (r = 0.12, p = 2.5e-02) and 
was positively correlated with the infiltration levels of B 
cells (r = 0.389, p = 7.33e-14), CD8+ T cells (r = 0.276, p 
= 2.09e-07), CD4+ T cells (r = 0.474, p = 1.19e-20), 
macrophages (r = 0.506, p = 1.31e-23), neutrophils (r = 
0.494, p = 1.14e-22), and dendritic cells (r = 0.443, p = 
8.24e-18). Further observation, ZNF765 expression in 
HCC is significantly correlated with the infiltrating levels 
of macrophages, CD4+ T cells, and neutrophils (Figure 
7A, 7B). Aiming to go deep into the correlation between 
ZNF765 and various immune cells, the relationship 
between ZNF765 mRNA expression level and immune 
marker genes was evaluated via the TIMER database. The 
result of the analysis indicated that ZNF765 was 
positively associated with some specific immune cell gene 
markers of B cells, T (general) cells, CD8+ T cells, 
monocytes, TAM, M1 and M2 macrophages, neutrophils, 
natural killer cells, and dendritic cells (Supplementary 
Figure 4). The specific quantitative results can be known 
from Supplementary Table 2. 
 
We further compared the abundance distribution in tumor-
infiltrating immune cells with different ZNF765 somatic 
copy number alteration (SCNA) via TIMER. B cells were 
the primary infiltrating immune cells of the ZNF765 gene 
in HCC with high amplification (all p value < 0.05) 
(Figure 7C). Meanwhile, our study also explored the 
correlation between ZNF765 expression and well-known 
T cell checkpoints (such as PD-1, PD-L1, and CTLA-4) in 
the GEPIA database. ZNF765 expression and the 
expression of PD-1, PD-L1, and CTLA-4 were found to 
have significant relationships in HCC (Figure 7D), 
implying that ZNF765 may be involved in immune escape. 
In addition, through the TISIDB website, we found that 
HCC-related chemokines such as CCL2 and CCL15 were 
negatively correlated with ZNF765, while CCL28 was 
positively correlated (Figure 7E). We experimentally 
verified the expression of immune-related chemokines in 
ZNF765-silenced HCC cells (Figure 7F). Compared with 
shNC, the expression of CCL2 and CCL15 was increased 
and the expression of CCL28 was significantly decreased 
in ZNF765-silenced cells. Therefore, we hypothesized that 
the correlation between ZNF765 and immune infiltration 
may be due to chemokines. In a word, ZNF765 had a 
positive relation with the purity of the tumor, and the 
expression ZNF765 was obviously related to the level of 
HCC immune infiltration and evasion. 
 
Prognostic analysis of ZNF765 expression in HCC 
based on immune cells 
 
We have attested that ZNF765 expression was 
associated with immune infiltration in hepatocellular 

carcinoma and with poor prognosis in patients. We 
attempted to investigate whether ZNF765 affects the 
prognosis of HCC patients through immune cells. We 
analyzed the prognosis of HCC patients according to 
different immune cell types and their different 
enrichment levels using Kaplan-Meier Plotter tools. The 
results of grouping analysis according to the number of 
immune cells showed that the survival of HCC patients 
was similar under the conditions of enrichment and non-
enrichment of various immune cells like B cells, CD4+ 
memory T cells, macrophages, and so on (Figure 8A–
8E). Interestingly, the degree of infiltration of certain 
kinds of immune cells can affect the prognosis of HCC 
patients. For example, high expression of ZNF765 in 
the enriched regulatory T-cells, enriched Type 1 T-
helper cells, and enriched Type 2 T-helper cell cohorts 
in HCC was linked to poor prognosis. In the decreased 
regulatory T-cell, decreased Type 1 T-helper cell, and 
decreased Type 2 T-helper cell cohorts, however, there 
was no association of ZNF765 levels with HCC patient 
prognosis (Figure 8F–8H). These findings suggested 
that the degree of infiltration of multiple immune cell 
subtypes, especially T cell subtypes, has a certain 
influence on the prognosis of HCC patients. Through 
TIMER, we also found that the expression of ZNF765 
was significantly correlated with gene markers of 
different types of T cells (Supplementary Table 3). In 
conclusion, we speculated that ZNF765 may affect the 
prognosis of HCC patients through T-cell infiltration. 
 
Corrections of ZNF765 expression with m6A 
modification in HCC 
 
N6-methyladenosine (m6A), a kind of internal 
modification that occurs at the N6-position of 
adenosine, most frequently happens in eukaryotic 
mRNA [18]. Numerous studies have found that m6A 
RNA methylation can play a role in the onset and 
progression of various diseases, particularly cancers, by 
influencing RNA metabolism [19]. Therefore, we 
attempted to investigate whether there was a correlation 
between ZNF765 and 21 m6A-related genes in HCC 
using the TCGA and ICGC databases, and our research 
findings indicated that there was a close relationship 
between the two (Figure 9A). Meanwhile, m6A-related 
gene expression was also different in HCC patients with 
different expressions of ZNF765 (Figure 9B). Next, we 
used Venn diagram analysis to obtain five genes with 
correlation coefficients greater than 0.6 with ZNF765 in 
the two databases, namely HNRNPA2B1, METTL3, 
RBMX, RBM15B, and LRPPRC (Figure 9C). Western 
blotting verified the inhibitory effect of ZNF765 
knockdown on the expression of HNRNPA2B1 and 
RBMX proteins with a correlation greater than 0.7 
(Figure 9D). Its correlation with ZNF765 was shown 
again in the scatter plot (Figure 9E). Further, 
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overexpression of these m6A-related genes was found to 
predict lower survival of HCC patients in GEPIA 
(Figure 9F). Furthermore, the results of risk score and 
survival analysis showed that HNRNPA2B1, METTL3, 

and LRPPRC were risk factors for HCC when ZNF765 
was highly expressed (Supplementary Figure 5A, 5B). 
However, HNRNPA2B1, METTL3, and LRPPRC had 
no effect on the prognosis of HCC patients when 

 

 
 
Figure 7. Correlations of ZNF765 expression with immune infiltration level and LIHC-related chemokines. (A, B) ZNF765 
expression is negatively related to tumor purity, infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and 
dendritic cells in HCC. (C) ZNF765 CNV affects the infiltrating levels of B cells, CD4+ T cells, and neutrophil cells in HCC (*p < 0.05, ***p < 
0.001). (D) The mRNA correlation between CD274/PDCD1/CTLA4 and ZNF765 in the LIHC data of TCGA. (E) The association between ZNF765 
and LIHC-related chemokines. (F) CCL2/CCL15/CCL28 relative mRNA expression in shNC and shZNF765. 
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ZNF765 was lowly expressed (Supplementary Figure 
5C). These results suggested that ZNF765 may affect 
patients with HCC through m6A-related regulatory 
factors. 
 
Drug susceptibility analysis associated with ZNF765 
 
Tumors being resistant to the drug may be the chief 
cause of the poor effects of chemotherapy in 

hepatocellular carcinoma [20]. Consequently, we 
primarily identified the first four jointly expressed 
genes most associated with ZNF765 from the volcanic 
map (Figure 6A) to conduct drug susceptibility analysis, 
namely ZNF587, ZNF611, ZNF761, and ZNF845. The 
GeneMANIA analysis revealed that they are very close 
relatives (Figure 10A). Additionally, the Kaplan-Meier 
plotter was used to determine whether the expression of 
these four genes affected the overall survival of HCC 

 

 
 
Figure 8. Kaplan-Meier survival curves according to high and low expression of ZNF765 in immune cell subgroups in HCC. 
(A–H) Relationships between ZNF765 of different immune cell subgroups and prognoses in HCC. 
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patients. In general, the results showed that when these 
four genes expressed at elevated levels, poor overall 
survival can occur (Figure 10B–10E). Pathway 
enrichment analysis through the GSCALite website 

revealed that the expression of these five genes, in 
particular, promoted the RTK pathway. And the high 
expression of ZNF765 activated the cell cycle, 
PI3K/AKT, RTK, hormone ER, apoptosis pathways, 

 

 
 
Figure 9. Corrections of ZNF765 expression with m6A modification in HCC. (A) The correlation between ZNF765 expression and 
the expression of m6A-modified genes was investigated by the Spearman statistical method using the TCGA and ICGC databases. (B) 
Distinct m6A-related gene expression in HCC patients with different expressions of ZNF765. (C) Five genes were found at the intersection of 
the TCGA and ICGC databases. (D) A Western blot was used to detect ZNF765, RBMX, and HNRNPA2B1 protein expression in HCCLM3 cells 
stably transfected with the control shRNA or the ZNF765 shRNA. (E) The correlation between ZNF765 and m6A-modified genes was 
analyzed by the scatter plot. (F) The overall survival of HCC patients was separated into two groups based on the high and low expression of 
these five m6A genes. *p < 0.05; **p < 0.01; ***p < 0.001. 
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and DNA damage response, while inhibiting 
TSC/mTOR, RAS/MAPK, and EMT pathways (Figure 
10F). Additionally, the result of the drug susceptibility 
analysis illustrated that cells with high ZNF765 

expression were sensitive to 20 drugs, while they were 
resistant to Docetaxel, 17-AAG, and Bleomycin (Figure 
10G). Previous articles reported that docetaxel and 
bleomycin are safe and effective treatments for HCC 

 

 
 
Figure 10. Drug susceptibility analysis associated with ZNF765. (A) The correlation between ZNF765 and the four jointly expressed 
genes most associated with it was explored by GeneMANIA analysis. (B–E) Took advantage of the Kaplan-Meier plotter to analyze the 
relationship between the expression of these four genes and the overall survival of HCC patients. (F) Pathway analyses were studied by the 
GSCA Lite website. (G) We used the GSCA Lite website to display drug susceptibility with these five hub genes. (H) HCCLM3 cells transfected 
with the shNC or shZNF765 were treated with Docetaxel and Bleomycin for 72 h, and then, cell viability was measured. *p < 0.05; **p < 0.01; 
***p < 0.001. 
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[21, 22], and our study confirmed that the knockdown 
of ZNF765 will increase the sensitivity of 
hepatocellular carcinoma cells to these two drugs 
(Figure 10H), which may provide a reference for drug 
treatment in HCC patients. 
 
DISCUSSION 
 
Hepatocellular carcinoma is a worldwide problem [23]. 
A significant number of HCC patients cannot receive 
timely diagnosis and treatment because of a lack of 
obvious symptoms and diagnostic markers in the early 
stage. Moreover, the percentage of advanced radical 
resectable HCC is low (10%-20%), and the prognosis is 
poor (total mortality to morbidity ratio of 0.95) [24, 25]. 
The rise of molecular-targeted therapies offers more 
hope for HCC patients. However, the further 
development of targeted drugs is currently almost at a 
standstill [26], making it necessary to identify more 
biomarkers for HCC patients. The objective of our 
study was to assess the expression, prognostic value, 
and biological effect of ZNF765 in hepatocellular 
carcinoma by using a variety of bioinformatics analysis 
methods. 
 
First, we used the TCGA and ICGC databases to 
analyze the expression of ZNF765 in HCC and its 
prognostic effect. As a result, ZNF765 was found to be 
overexpressed in HCC patients and was correlated with 
clinicopathological features. With the continuous 
development of the tumor, the expression level 
gradually increased, and high expression predicted poor 
survival. Moreover, immunohistochemistry and a 
colony formation assay confirmed the overexpression of 
ZNF765 in hepatocellular carcinoma and its promoting 
effect on the proliferation of this cancer. The COX 
model showed that ZNF765 could be an independent 
prognostic factor for hepatocellular carcinoma, which 
highlighted the prognostic role of ZNF765 in 
hepatocellular carcinoma. The above results tentatively 
confirm the involvement of ZNF765 in the progression 
of hepatocellular carcinoma. 
 
DNA methylation is a form of DNA modification that 
plays a major role in gene expression in mammalian 
genomes [27]. We hypothesized that a low promoter 
methylation level resulted in high ZNF765 expression 
and validated this hypothesis using UALCAN, 
MethSurv, and cBioPortal. Based on the results, we 
believe that hypomethylation led to high expression of 
ZNF765, which even affected the survival of patients. 
 
Subsequently, the function of ZNF765 was further 
studied. Co-expressed genes were identified, and PPI 
analysis was performed. Some proteins interacting with 
ZNF765 were found to be involved in the cell cycle. At 

the same time, enrichment analysis also revealed cell 
cycle, DNA replication, and immune-related pathways. 
Uncontrolled tumor cell proliferation caused by 
abnormal activity of various cyclins is characteristic of 
cancer [28]. It is known that a variety of cell cycle 
proteins play a key role in hepatocellular carcinoma, 
such as Cyclin D1 (CCND1), C-myc or Ras, cyclin D2 
(CCND2), etc. [29]. Among the co-expressed genes of 
ZNF765, Arhgap11a expresses itself in a cycle-
dependent manner [30], and ECT2, as a guanine 
nucleotide exchange factor, plays an important role in 
cell division and cell cycle regulation [31]. In particular, 
ANLN may be involved in the pathway that mediates 
abnormal cell division in the cell cycle in HCC [32]. As 
a result, we hypothesized that ZNF765 might affect 
HCC by affecting the cell cycle. 
 
The cellular component of the tumor microenvironment 
(TME) is highly complicated [33], and multiple 
immune cells are involved in cancer immune evasion 
and the immunotherapy response [34], as well as 
playing a key role in HCC initiation and progression 
[35]. In addition, the results of the above pathway 
enrichment analysis have suggested that ZNF765 may 
be involved in immune-related pathways. For these 
reasons, we attempted to further explore the potential 
association between ZNF765 and the immune 
microenvironment. Studies have shown that the 
interaction between HCC cells and macrophages can 
facilitate the proliferation and metastasis of cancer cells 
through the up-regulation of CXCL8/Mir-17 clusters 
[36]. Loss of CD4 + T cells promotes progression to 
HCC in nonalcoholic fatty liver disease [37] and 
elimination of neutrophil extracellular traps (NETs) 
may reduce progression to hepatocellular carcinoma in 
nonalcoholic steatohepatitis [38]. In our study, we 
evaluated the connection between ZNF765 and immune 
cell infiltration and found that there was a positive 
correlation between the two, especially between 
ZNF765 and macrophages, CD4+ T cells, and 
neutrophils mentioned above. Chemokines are small 
proteins involved in immune cell migration, tumor 
growth, and immune regulatory dynamics [39, 40], 
which is why we suspect that they are the key factors 
mediating ZNF765’s effect on immune cell infiltration. 
TISIDB and experimental verification revealed that 
ZNF765 was negatively correlated with CCL28 and 
that CCL28 expression in shZNF765 cells was 
significantly lower than in shNC cells, whereas CCL2 
and CCL15 were on the contrary. It has been suggested 
that CCL28 is up-regulated in HCC and can promote 
the recruitment of regulatory T cells and the invasion 
and migration of hepatocellular carcinoma [41, 42]. 
Based on the above results, it is rational to conclude 
that ZNF765 may influence immune cell infiltration 
through immune chemokines. 
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In the TME, T cells can recognize tumor antigens and, 
at the same time, have a group of cell-surface molecules 
called immune checkpoints that fine-tune their response 
[43]. Immune checkpoint inhibitors, including those that 
target the programmed cell death 1 and programmed 
cell death ligand 1 (PD-1 and PD-L1) and cytotoxic T 
lymphocyte antigen 4 (CTLA-4) pathways, are 
revolutionizing cancer therapy [44, 45]. The association 
of ZNF765 with T cell checkpoints was evaluated to 
facilitate the guidance of immunotherapy in patients, as 
immune checkpoint therapy has been reported to bring 
benefits to patients with hepatocellular carcinoma [46]. 
We found that T cell checkpoints CTLA-4, PD-1, and 
PD-L1 were closely related to ZNF765, and the number 
of multiple subtypes of T cells may have an effect on 
the prognosis of patients with hepatocellular carcinoma. 
To sum up, we believe that ZNF765 may participate in 
immune infiltration and immune escape in 
hepatocellular carcinoma patients. 
 
M6-methyladenosine (m6A) is an indispensable RNA 
modification mode [47]. The regulatory factor of m6A 
modification makes a difference in cancer development 
and has been shown to participate in the tumorigenesis 
of HCC [48, 49]. For example, METTL3 can play a 
carcinogenic role in HCC through YTHDF2-dependent 
SOCS2 posttranscriptional silencing [50], and 
stabilization of BLACAT1 expression through RBMX 
promotes HCC development and drug resistance [51]. 
Our study focused on the connection between ZNF765 
and m6A-related genes. The expression of ZNF765 
showed the same trend as that of several m6A-related 
genes. Among them, RBMX, METTL3, RBM15B, 
HNRNPA2B1, and LRPPRC were highly associated 
with ZNF765, and we also confirmed the regulation of 
ZNF765 on HNRNPA2B1 and RBMX by western 
blotting. Additionally, results revealed that up-
regulation of these five genes resulted in poor survival 
in HCC patients and is a risk factor for HCC [52–55]. 
Consequently, we hypothesized that ZNF765 may 
promote hepatocellular carcinoma through the m6A 
regulatory factor. 
 
Drug resistance is a major challenge in cancer treatment 
and can hinder long-term survival [55]. The multi-target 
tyrosine kinase inhibitor sorafenib, a first-line agent for 
patients with HCC, has shown resistance in most 
patients [56]. Accordingly, it makes sense to explore the 
sensitivity of HCC patients to different drugs. We used 
ZNF765 and the 4 genes most similar to its expression to 
explore the drug sensitivity of patients with HCC. The 
results show that patients with up-regulated ZNF765 
expression were sensitive to 20 drugs, especially i-BET-
762 and NPK76-ii-72-1, while resistant to docetaxel, 17-
AAG, and bleomycin. Further, half maximal inhibitory 
concentration confirmed the effect of ZNF765 

expression on the sensitivity of hepatocellular carcinoma 
cells to effective docetaxel and bleomycin used in the 
treatment of patients with hepatocellular carcinoma. 
 
In a nutshell, our study illustrates the fact that ZNF765 
may be a potential biomarker that promotes the 
progression of hepatocellular carcinoma and is associated 
with a poor prognosis. In our research, ZNF765 may not 
only affect the cell cycle but also act on the 
microenvironment of hepatocellular carcinoma to regulate 
tumor-infiltrating immunity and m6A modification and 
influence patient sensitivity to drugs. At the same time, 
this study still has some limitations. We started to explore 
ZNF765 using only the TCGA, ICGC, and HCCDB 
databases without actual clinical data. Besides, high-
quality validation of the above biological functions should 
be further performed by cell or animal experiments. 
 
MATERIALS AND METHODS 
 
Data collection and processing 
 
LIHC gene expression patterns and clinical information 
are from the TCGA database 
(https://portal.gdc.cancer.gov) [57] and the ICGC 
database (https://dcc.icgc.org) [58]. In TCGA, we used 
374 cancer samples and 50 normal samples, file type 
HTSEQ-FPKM, including those for gene expression 
studies, and clinical information for 377 samples. 
Meanwhile, 202 normal samples and 243 tumor samples 
were obtained in the ICGC from the (LINC-JP) Liver 
Cancer - NCC and JP datasets. 
 
Patients and tumor specimens 
 
Human HCC samples and matched adjacent samples 
were obtained from 40 patients undergoing liver 
resection in the Second Affiliated Hospital of Nanchang 
University from January 2018 to January 2021. The 
patient’s informed consent was obtained. At the same 
time, the research ethics committee of the hospital 
mentioned above agreed to the experiment. 
 
Cell culture 
 
Transfection human HCC cell lines LM3 were obtained 
from the Chinese Academy of Sciences Cell Bank of 
Type Culture Collection and the Shanghai Institute of 
Cell Biology in China. The cells were maintained with 
5% CO2 at 37°C in DMEM (HyClone, Germany) with 
10% fetal bovine serum (GIBCO, USA). 
 
TIMER database analysis 
 
TIMER (https://cistrome.shinyapps.io/timer), a 
functional website, could dissect the levels of immune 

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://cistrome.shinyapps.io/timer
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invasion in different kinds of cancer [59]. In our study, 
the “Diff Exp module” was chosen to recognize 
ZNF765 expressions in specific types of cancers. Then, 
the “gene module” was adopted to explore the 
connection between ZNF765 and immune infiltration in 
cancer. What’s more, immune cell infiltration levels in 
various SCNA changes in ZNF765 were compared via 
the “SCNA module.” The difference between the 
infiltration level for each SCNA category and the 
normal was assessed through a two-sided Wilcoxon 
rank-sum test. Finally, with the help of the “correlation 
module,” considering Spearman’s rho value (p value < 
0.05) and predicted statistical implications, the 
relationship of ZNF765 with the gene markers of 
immune cells in HCC was proved. 
 
HCCDB database 
 
HCCDB (http://lifeome.net/database/hccdb), a database 
designed for exploring HCC, contains 15 public HCC 
gene expression datasets from 3917 samples [60]. Its 
data is collected from Gene Expression Omnibus 
(GEO), the Liver Hepatocellular Carcinoma Project of 
the Cancer Genome Atlas (TCGA-LIHC), Liver 
Cancer-RIKEN, and the JP Project from the 
International Cancer Genome Consortium (ICGC LIRI-
JP). We used this website to confirm the high ZNF765 
expression in HCC in tumor tissues, and high ZNF765 
expression leads to a poor prognosis. A p value of 0.05 
was considered meaningful. 
 
UALCAN database analysis 
 
The UALCAN database (http://ualcan.path.uab.edu/) 
[61] is an oncology data analysis site that provides 
comprehensive cancer transcriptome and clinical patient 
data (extracted from TCGA). In our study, the 
“expression” and “survival” modules from the “Liver 
Hepatocellular Carcinoma” database were applied to 
assess the expression and survival of ZNF765, 
respectively. We also analyzed ZNF765 expression in 
normal and LIHC samples based on clinicopathological 
characteristics. We further studied the 
clinicopathological features of ZNF765 promoter 
methylation, which include the tumor grade, patient’s 
gender, age, and others. 
 
Kaplan-Meier plotter database analysis 
 
We performed a data analysis of ZNF765 expression 
and survival in 364 HCC patients using Kaplan-Meier 
Plotter (http://kmplot.com) [62]. The differences in 
overall survival (OS), progression-free survival (PFS), 
disease-specific survival (DSS), and relapse-free 
survival (RFS) were found in patients with HCC 
receiving different expressions of ZNF765. We also 

explored the difference in LIHC patients’ survival under 
different immune cell numbers. Hazard ratios (HRs), 
95% confidence intervals (95% CI), and Logrank 
p values were calculated. 
 
LinkedOmics analysis 
 
LinkedOmics (http://www.linkedomics.org/login.php), a 
comprehensive online site, is usually chosen to analyze 
multidimensional data within and across 32 kinds of 
cancer [63]. Using it, we succeeded in mining the co-
expressed genes linked to ZNF765 in the TCGA LIHC 
database through the results of the analysis. Volcano 
plots and heat maps provided strong evidence for this. 
We did a correlation analysis as a concrete measurement 
of our study. The website was also selected to complete 
the GO term and KEGG pathway enrichment analysis. It 
was aimed at identifying the Gene Ontology (GO) 
annotations and pathways. Pathways with p value < 0.05 
were considered as the standard. 
 
Gene set enrichment analysis (GSEA) 
 
Usually, Gene Set Enrichment Analysis (GSEA) is 
adopted for genome-wide expression profile analysis 
and interpretation built on biological knowledge [64]. 
The RNA-seq data of 374 HCC cases were downloaded 
from Genomic Data Commons 
(https://portal.gdc.cancer.gov/). We set each HCC 
patient’s ZNF765 expression into two expression 
groups. The parameters were established, such as gene 
set database: h. All. V7.4 Symbols. gmt (Hallmarks); 
number of permutations: 1,000. p value < 0.05 and a 
false discovery rate (FDR) < 0.25 were considered as 
meaningful. 
 
PPI network construction 
 
We applied the PPI network of the STRING website 
(https://string-db.org/) [65] to do research about the 
connection between the 500 most related genes. The 
parameter of medium confidence was set at 0.4. The top 
500 genes were evaluated by Cytoscape 3.8.2 and its 
plug-in MCODE (Molecular Complex Detection). The 
selection criteria are as follows: Max depth = 100, node 
score cutoff = 0.2, K-core = 2. 
 
GeneMANIA analysis 
 
GeneMANIA (http://www.genemania.org) is a powerful 
website for gene analysis with its large and interwoven 
data network [66]. We chose it to build an interactive 
functional network of ZNF765 in HCC. We can get a 
lot from its functional network, for example, physical 
interaction, gene co-expression, gene co-localization, 
gene enrichment analysis, and website prediction. In the 

http://lifeome.net/database/hccdb
http://ualcan.path.uab.edu/
http://kmplot.com/
http://www.linkedomics.org/login.php
https://portal.gdc.cancer.gov/
https://string-db.org/
http://www.genemania.org/
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network, we used different kinds of circles of different 
sizes to represent the protein, and the number and 
thickness of the connection indicated the strength of the 
connection between the two sides of the connection. 
 
GEPIA analysis 
 
GEPIA (http://gepia.cancer-pku.cn/) [67] is an analysis 
site using the TCGA and GTEx databases. In our study, 
the TCGA LIHC database was applied to evaluate the 
expression of ZNF765. In GEPIA’s “Expression DIY” 
module, log2 (TPM+1) was used for logarithmic scale 
matching to assess the expression difference of ZNF765 
between LIHC and normal adjacent LIHC tissue 
samples. In addition, the Spearman coefficient was used 
to analyze the correlation between ZNF765 and PD-1, 
PD-L1, and CTLA-4 in the “correlation analysis” 
module. In the “Survival” module, we plotted the 
overall survival situation of m6A-related genes, 
HNRNPA2B1, METTL3, RBMX, RBM15B, and 
LRPPRC, respectively. 
 
TISIDB analysis 
 
TISIDB (http://cis.hku.hk/TISIDB) integrates multiple 
types of data resources from tumor immune technology 
to study tumor immune interactions [68]. The 
“Chemokine” module was used to analyze Spearman 
correlations between ZNF765 and chemokines, CCL2, 
CCL15, and CCL28, across liver hepatocellular 
carcinoma (LIHC). 
 
Cancer pathway activity and drug sensitivity 
 
GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/) 
integrates large amounts of multi-omics and drug data to 
assess a series of genes in cancer [69]. The genes with the 
highest correlation with ZNF765 expression, ZNF587, 
ZNF611, ZNF761, and ZNF845, were used for the 
“Pathway Activity” and “Drug Sensitivity” module 
analyses in the TCGA-LIHC dataset of the GSCALite 
website. 
 
Correlation analysis 
 
We performed correlation analysis of gene expression 
using R software (limma, ggplot2, and pheatmap 
packages). We plotted heat maps to illustrate the 
correlation between ZNF765 and m6A-related genes. 
The relationships among ZNF765 and the most relevant 
five genes were visualized in scatter diagrams. 
 
Immunohistochemistry 
 
Initially, the LIHC tissue and adjacent tissues were 
fixed in formalin and embedded in paraffin, and cut into 

4-um-thick sections [70]. After the antigen was repaired 
by deparaffinization, rehydration, and microwave 
heating in a microwave-heated antigenic unsealing 
solution (EDTA, pH 8.0), the slices were sealed with 
goat serum for 30 minutes. The sections are then 
incubated at 4°C overnight with anti-ZNF765 
monoclonal antibody (ZNF765-Biorbyt-Catalog 
number: orb472218). Afterward, the HRP-conjugated 
secondary antibody (Boster) was placed at room 
temperature for 2 h. Subsequently, the two-step 
approach (catalog no: PV-9000; ZSGB-BIO Co., Ltd., 
Beijing, China) was used for immunostaining. 
Ultimately, three pathologists who are unfamiliar with 
the clinical parameters appraised the staining intensity 
and the proportion of positive cells semi-quantitatively. 
 
Colony formation assay 
 
The transfected cells were cultured for 48 h, and then a 
total of 3 × 103 cells were cultured in 6-well plates. Ten 
days later, 4% paraformaldehyde was used to fix cells 
for 35 minutes. Then, they were stained with 1.0% 
crystal violet for 30 min, until visible clones form. The 
number of colonies was counted in 10 different fields. 
 
Transwell assay 
 
Human HCCLM3 cells were inoculated into the upper 
chamber with a serum-free medium. Each well was a 
density of 2 × 106 cells. The bottom chamber is filled 
with 500 µl of 20% fetal bovine serum (FBS) culture 
medium. After incubating in a 5% (v/v) CO2 incubator 
at RT for 2 d, and removing the non-invasive cells and 
matrigel in the upper chamber, the cells were fixed on 
the lower surface with 10% neutral buffered formalin 
solution and 0.1% crystal violet staining. The invading 
cells in five randomly selected microscope fields were 
counted. 
 
Real-time RT-PCR analyses 
 
Total mRNA was extracted with the standard Trizol-
based protocol (Invitrogen, USA), and PrimeScript RT 
Reagent Kit (Invitrogen, USA) performed a reverse 
transcription reaction. The qPCR was conducted by 
SYBR Premix Ex Taq (TaKaRa, China). Finally, a 
semi-quantitative analysis was performed. This 
technique was adopted in our study to examine the 
relative mRNA expression of CCL2, CCL15, and 
CCL28. 
 
Western blot 
 
Total protein was obtained from LIHC cells using the 
RIPA protein assay (Beyotime, Shanghai, China). After 
centrifugation, the concentration of protein was 

http://gepia.cancer-pku.cn/
http://cis.hku.hk/TISIDB
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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measured by the BCA protein assay kit (Thermo 
Scientific, Waltham, MA, USA). Then, the quantities of 
protein (40 ug) were loaded onto SDS-PAGE 
electrophoreses and transferred to the PVDF membrane. 
Having incubated with the indicated antibodies 
overnight at 4°C, the membrane was washed three times 
with TBST. Then, the membranes were incubated with 
ZNF765-, HNRNPA2B1-, or RBMX-conjugated 
secondary antibodies for 1 h at room temperature. 
Finally, the membranes were observed by using an 
enhanced chemiluminescence (ECL) kit. 
 
Half-maximal inhibitory concentration (IC50) 
 
The HCCLM3 cells were treated with serially diluted 
docetaxel and bleomycin via a Janus automated 
workstation (PerkinElmer). Analysis of cell viability was 
done using a firefly-luciferase based ATP monitoring 
system (ATPLite™ 1step; PerkinElmer). Half maximal 
inhibitory concentration values were determined by 
performing logarithm-normalized sigmoidal dose curve 
fitting using the GraphPad Prism 6 software. 
 
Statistical analysis 
 
All statistical analysis in this work was done by R 
software (version 4.1.2). The detection of different 
ZNF765 expression levels between LIHC samples and 
normal samples was realized by using the “limma” and 
“beeswarm” packages of “R” and the rank sum test 
method. The connection between ZNF765 and clinical 
characteristics was evaluated by the Wilcoxon signed-
rank test or Kruskal-Wallis test and logistic regression. 
The Kaplan-Meier curve was then drawn using the log-
rank test to investigate prognosis distribution among 
patients with different expressions to determine whether 
the differential expression of genes played an important 
role in patient survival (p < 0.05). Univariate and 
multivariate Cox regression analysis identified factors 
significantly associated with prognosis (p < 0.05) (the 
Cox model uses the “survival” and “survminer” 
packages of “R”). Lastly, the ROC curve drawn by the 
“survival ROC” was applied to analyze the predictive 
capacity of the ZNF765 expression level over one, 
three, or five years. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. The expression of ZNF765 in pan-cancers. Level of ZNF765 expression in a variety of cancer tissues (data 
from the TIMER database) (***p < 0.001, **p < 0.01, *p < 0.05). 
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Supplementary Figure 2. The function of high ZNF765 expression in prognosis. (A–D) Kaplan-Meier analysis of OS (overall 
survival), RFS (relapse-free survival), PFS (progression-free survival), and DSS (disease-specific survival) in the HCC patients. (E) Effect of 
ZNF765 mRNA expression level on HCC patient survival by HCCDB (p = 0.0324). (F) Survival probability of HCC patients with different 
genders and ZNF765 expression. (G) Survival probability of HCC patients with different tumor grades and ZNF765 expression. (H) Survival 
probability of HCC patients between different races and ZNF765 expression. 
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Supplementary Figure 3. Enrichment analysis of ZNF765 functional networks in HCC. (A) GO pathway analysis. Dark blue and 
orange indicate an FDR ≤ 0.05, whereas light blue and orange indicate an FDR greater than 0.05. FDR, false discovery rate. (B) KEGG 
pathway analysis. FDR ≤ 0.05 is indicated by dark blue and orange; FDR > 0.05 is indicated by light blue and orange. (C) GSEA analysis of 
ZNF765 based on expression in the TCGA-LIHC dataset. Abbreviation: NES: normalized enrichment score. NOM p-value: nominal p value; 
FDR q-val: false discovery rate. 
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Supplementary Figure 4. Correlation of ZNF765 expression and the marker genes of infiltrating immune cells in HCC 
(TIMER). The scatter plots showed correlation between ZNF765 expression and the gene markers of (A) B cell (CD79A, CD19); (B) T cell 
(CD3D, CD3E, CD2); (C) Monocyte (CD86, CSF1R); (D) TAM cell (CCL2, CD68, IL10); (E) M1 cell (IRF5, PTGS2); (F) M2 cell (CD163, VSIG4, 
MS4A4A); (G) Neutrophils (ITGAM, CCR7, CEACAM8); (H) Natural killer cell (KIR2DL3, KIR2DL4, KIR3DL1, KIR3DL2); (I) Dendritic cell (HLA-
DPB1, HLA-DRA, HLA-DPA1, CD1C, NRP1, ITGAX). 
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Supplementary Figure 5. ZNF765 affects the prognosis of HCC patients by affecting some m6A regulators. (A) HNRNPA2B1, 
METTL3, and LRPPRC were risk factors for HCC when ZNF765 was highly expressed. (B) When ZNF765 was highly expressed, high expression 
of HNRNPA2B1, METTL3 or LRPPRC led to poor survival in HCC patients. (C) HNRNPA2B1, METTL3, and LRPPRC had no effect on the 
prognosis of HCC patients when ZNF765 was lowly expressed. 
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Supplementary Tables 
 
Supplementary Table 1. Univariate and multivariate COX regression analysis of factors associated with OS in 
HCC patients. 

Variable 
Univariate analysis Multivariate analysis 

HR 95% CI p value HR 95% CI p value 

Age 1.007 0.990–1.024 0.441 1.018 0.999–1.038 0.069 
Gender 0.839 0.536–1.314 0.443 1.198 0.735–1.953 0.469 
Grade 1.073 0.795–1.449 0.645 1.098 0.795–1.518 0.57 
Stage 1.809 1.426–2.294 <0.001 0.928 0.396–2.172 0.863 
T 1.767 1.415–2.207 <0.001 1.805 0.828–3.936 0.137 
M 3.892 1.223–12.386 0.021 2.079 0.556–7.777 0.277 
ZNF765 3.728 1.775–7.830 0.001 4.314 1.815–10.253 0.001 

Abbreviations: OS: overall survival; HR: hazard ratio; CI: confidence interval; T: tumor; N: node; M: metastasis; Bold values 
indicate p values <0.05. 
 
 

Supplementary Table 2. Relationship between ZNF765 and gene markers of different immune cells using the 
TIMER database. 

Description Gene markers 
LIHC 

None Purity 

Cor p Cor p 

B cell 
CD19 0.218 2.23E-05 0.275 2.02E-07 

CD79A 0.154 3.01E-03 0.25 2.49E-06 

T cell (general) 
CD3D 0.109 3.55E-02 0.207 1.06E-04 
CD3E 0.155 2.75E-03 0.291 3.86E-08 
CD2  0.146 4.74E-03 0.271 3.29E-07 

CD8+ T cell 
CD8A 0.171 9.53E-04 0.272 3.02E-07 
CD8B 0.077 1.39E-01 0.16 2.83E-03 

Monocyte 
CD86 0.306 2.12E-09 0.454 5.73E-19 

CSF1R 0.222 1.67E-05 0.363 3.32E-12 

TAM 
CCL2 0.196 1.54E-04 0.321 9.96E-10 
CD68 0.221 1.90E-05 0.314 2.56E-09 
IL10 0.24 2.99E-06 0.337 1.25E-10 

M1 
IRF5 0.464 3.53E-21 0.458 3.00E-19 

PTGS2 0.307 1.47E-09 0.455 4.54E-19 

M2 
CD163 0.204 7.29E-05 0.318 1.52E-09 
VSIG4 0.161 1.94E-03 0.27 3.72E-07 

MS4A4A 0.169 1.07E-03 0.299 1.43E-08 

Neutrophils 
CEACAM8 0.051 3.24E-01 0.076 1.62E-01 

ITGAM 0.301 4.08E-09 0.395 2.44E-14 
CCR7 0.17 1.04E-03 0.297 1.84E-08 



www.aging-us.com 6210 AGING 

Natural killer cell 

KIR2DL1 0.06 2.48E-01 0.048 3.75E-01 
KIR2DL3 0.194 1.73E-04 0.235 1.04E-05 
KIR2DL4 0.158 2.27E-03 0.181 7.20E-04 
KIR3DL1 0.113 2.91E-02 0.127 1.78E-02 
KIR3DL2 0.134 9.70E-03 0.185 5.64E-04 
KIR3DL3 0.031 5.53E-01 0.018 7.43E-01 

Dendritic cell 

HLA-DPB1 0.177 6.19E-04 0.284 8.06E-08 

HLA-DQB1 0.101 5.27E-02 0.192 3.45E-04 
HLA-DRA 0.229 8.92E-06 0.344 5.08E-11 

HLA-DPA1 0.222 1.62E-05 0.346 3.88E-11 
CD1C 0.242 2.41E-06 0.335 1.73E-10 

NRP1 0.529 0.00E+00 0.581 1.39E-32 
ITGAX 0.368 3.50E-13 0.492 1.91E-22 

 
Supplementary Table 3. Correlation analysis between ZNF765 and gene markers of different types of T cells in 
TIMER. 

Description Gene markers 

LIHC 

None Purity 
Cor p Cor p 

Th1 

TBX21 0.143 5.87E-03 0.239 6.93E-06 
STAT4 0.221 1.90E-05 0.284 7.69E-08 
STAT1 0.484 0.00E+00 0.531 1.69E-26 

TNF 0.295 7.21E-09 0.406 3.93E-15 
IFNG 0.171 9.32E-04 0.243 5.20E-06 

Th1-like 

HAVCR2 0.302 3.50E-09 0.454 6.21E-19 
IFNG 0.171 9.32E-04 0.243 5.20E-06 

CXCR3 0.187 2.95E-04 0.282 1.01E-07 
BHLHE40 0.404 0.00E+00 0.427 1.08E-16 

CD4 0.269 1.62E-07 0.35 2.17E-11 

Th2 
STAT6 0.39 6.88E-15 0.38 2.88E-13 

STAT5A 0.35 3.96E-12 0.423 2.02E-16 

Treg 
FOXP3 0.247 1.46E-06 0.298 1.60E-08 
CCR8 0.472 6.08E-22 0.571 3.18E-31 

TGFB1 0.341 1.99E-11 0.448 1.84E-18 

Resting Treg 
FOXP3 0.247 1.46E-06 0.298 1.60E-08 
IL2RA 0.281 3.57E-08 0.408 2.99E-15 

Effector Treg T-cell 
FOXP3 0.247 1.46E-06 0.298 1.60E-08 
CCR8 0.472 6.08E-22 0.571 3.18E-31 

TNFRSF9 0.4 1.05E-15 0.501 2.56E-23 

Effector T-cell 
CX3CR1 0.475 0.00E+00 0.529 2.91E-26 
FGFBP2 0.008 8.72E-01 0.039 4.66E-01 
FCGR3A 0.295 8.36E-09 0.389 7.09E-14 
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Naïve T-cell 
CCR7 0.17 1.04E-03 0.297 1.84E-08 
SELL 0.296 6.89E-09 0.421 3.05E-16 

Effector memory T-cell 
DUSP4 0.341 2.06E-11 0.445 3.64E-18 
GZMK 0.084 1.07E-01 0.187 4.93E-04 
GZMA 0.065 2.11E-01 0.153 4.41E-03 

Resident memory T-cell 
CD69 0.259 4.21E-07 0.396 2.11E-14 

CXCR6 0.164 1.57E-03 0.29 4.21E-08 
MYADM 0.604 0.00E+00 0.647 2.96E-42 

General CCR7 0.17 1.04E-03 0.297 1.84E-08 

memory T-cell 
SELL 0.296 6.89E-09 0.421 3.05E-16 
IL7R 0.33 6.88E-11 0.469 3.17E-20 

Exhausted T-cell 

HAVCR2 0.302 3.50E-09 0.454 6.21E-19 
LAG3 0.154 3.03E-03 0.181 7.33E-04 

CXCL13 0.164 1.52E-03 0.222 3.04E-05 
LAYN 0.348 6.73E-12 0.442 6.46E-18 

 
 


