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INTRODUCTION 
 
Ischemic stroke is a medical condition that occurs when 
the blood flow to a part of the brain is blocked, typically 
by a blood clot [1]. This lack of blood flow can cause 
brain cells to die, leading to a range of symptoms, such 
as numbness or weakness on one side of the body, 
difficulty speaking or understanding speech, and severe 
headache [2]. Numerous studies have identified various 
risk factors for ischemic stroke, including high blood 

pressure, smoking, diabetes, and high cholesterol [3]. 
Researchers continue to investigate how these and other 
risk factors contribute to the development of stroke and 
how they can be addressed to prevent stroke [4]. 
Advances in imaging technology have allowed 
researchers to better understand the mechanisms behind 
ischemic stroke [5]. For example, magnetic resonance 
imaging (MRI) can show the extent of damage to the 
brain following a stroke and help doctors determine the 
best course of treatment [6]. There are several 
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ABSTRACT 
 
Purpose: At present, there is a lack of accurate early diagnostic markers for ischemic stroke. 
Methods: By using dimensionality reduction cluster analysis, differential expression analysis, weighted co-
expression network analysis, protein-protein interaction network analysis, cell heterogeneity and key 
pathogenic genes were identified in ischemic stroke. Immunomicroenvironment analysis was used to explore 
the immune landscape and immune associations of key genes in ischemic stroke. The analysis platform we use 
is R software (version 4.0.5). PCR experiments were used to verify the expression of key genes. 
Results: Single cell sequencing data in ischemic stroke can be annotated as fibroblast cells, pre-B cell CD34, 
neutrophils cells, bone marrow (BM), keratinocytes, macrophage, neurons and mesenchymal stem cells (MSC). 
By the intersection of differential expression analysis and WGCNA analysis, 385 genes were obtained. Gene 
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these 
genes were highly correlated with multiple functions and pathways. Protein-protein interaction network 
analysis revealed that MRPS11 and MRPS12 were key genes, both of which were down-regulated in ischemic 
stroke. The Pseudo-time series analysis found that the expression of MRPS12 decreased gradually with the 
differentiation of pre-B cell CD34 cells in ischemic stroke, suggesting that the downregulation of MRPS12 
expression may play an important role in ischemic stroke. At last, PCR showed that MRPS11 and MRPS12 were 
significantly down-regulated in peripheral blood of patients with ischemic stroke. 
Conclusions: Our study provides a reference for the study of pathogenesis and key targets of ischemic stroke. 
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treatments available for ischemic stroke, including 
thrombolytic therapy (using medication to dissolve the 
blood clot) and mechanical thrombectomy (using a 
device to physically remove the clot) [7]. Researchers 
are continuing to refine these treatments to improve 
their effectiveness and reduce the risk of complications. 
Preventing stroke is a major focus of research in this 
field, and several strategies have been developed to 
reduce the risk of ischemic stroke [8]. These include 
lifestyle changes such as exercise and healthy eating, as 
well as medications such as blood thinners and 
cholesterol-lowering drugs [8]. 
 
Overall, research into ischemic stroke is ongoing and 
has made significant progress in recent years. While 
there is still much to study the pathogenesis and early 
robust markers of ischemic stroke for improved 
outcomes for those affected by stroke [9]. 
Transcriptome analysis using sequencing technology is 
a powerful tool in the study of ischemic stroke [9]. It 
allows researchers to investigate changes in gene 
expression following a stroke and to identify the 
specific genes and signaling pathways involved in the 
development of stroke and the recovery process [10]. 
Transcriptome analysis can be used to identify potential 
biomarkers of ischemic stroke, reveal new therapeutic 
targets for the treatment of stroke, and provide insight 
into the underlying mechanisms of stroke 
pathophysiology [11]. Additionally, transcriptome 
analysis can help tailor treatment to individual patients 
by identifying subgroups with different molecular 
profiles [11]. Recent studies have yielded promising 
results, and further research is likely to uncover even 
more insights into this complex condition. 
 
The development of high-throughput sequencing 
technology, also known as next-generation sequencing, 
has revolutionized the field of genomics by allowing 
rapid and cost-effective sequencing of entire genomes 
and transcriptomes [12]. Transcriptome sequencing, 
also known as RNA sequencing (RNA-seq), is a 
powerful tool for analyzing gene expression and has 
become increasingly popular in the study of ischemic 
stroke [13]. RNA-seq allows researchers to identify 
changes in gene expression in response to various 
stimuli, including stroke, and provides a comprehensive 
view of the transcriptome [14–16]. 
 
In this study, we analyzed single-cell sequencing data 
and high-throughput sequencing data for ischemic 
stroke, combined with a variety of methods, including 
dimensionality reduction clustering and weighted co-
expression network analysis (WCGNA), and we found 
that MRPS11 and MRPS12 are robust markers of 
ischemic stroke, providing reference for its prevention 
and treatment. 

METHODS 
 
Single cell sequencing data download and quality 
control 
 
For a vast variety of disorders, the GEO database 
contains single-cell sequencing and transcriptome 
sequencing data. The blood single cell sequencing 
dataset GSE174574 on ischemic stroke, which included 
three mouse model of middle cerebral artery occlusion 
(MACO) with ischemic stroke and three normal control 
samples with sham operation, was downloaded for this 
investigation [9]. The data was then processed and 
analyzed using the “Seurat” R package. These were the 
criteria for including genes in further analysis: 1. Genes 
that are expressed in three or more cells. 2. Genes that 
have an expression level greater than 200. The 
following are the criteria for include cells: 1. Gene 
expression fluctuates between 200 and 4000; 2. Less 
than 10 percent of the genes are mitochondrial genes. 
 
Processing of single cell sequencing data 
 
We first standardize the data using the “LogNormalize” 
method of the “Seurat” package. The number of high-
variable genes was then set to 3000, and the setting 
technique was changed to “vst” to conduct additional 
research on high-variable genes. The “Seurat” 
package’s SCTransform function was used to 
recombine data from several samples and remove cell 
cycle and mitochondrial interference. The data 
dimensions were reduced by using the UMAP technique 
with dims set to 30. The cells were clustered using the 
“KNN” algorithm, with the following settings: k.Paam 
= 30, dims = 20, resolution = 1.0, random.seed = 2023. 
Then, the annotations on cells were made using 
“SingleR” and the CellMarker website 
(http://117.50.127.228/CellMarker/index.html). 
 
Transcriptome data download and processing 
 
Ischemic stroke-related blood transcriptome data sets 
GSE16561 and GSE58294 were downloaded from the 
GEO database, and expression matrices were 
standardized for subsequent analysis [17, 18]. A total of 
63 samples were included in GSE16561, including 24 
normal control samples and 39 stroke samples. A total 
of 92 samples were included in GSE58294, including 
23 normal samples and 69 stroke samples. All data are 
standardized by log2 to facilitate subsequent analysis. 
 
Weighted gene coexpression network analysis 
(WGCNA) 
 
Gene modules connected to ischemic stroke were sought 
after using WGCNA analysis. The soft threshold range 
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were set as follows: step size is 1 for consecutive integers 
from 1 to 10; step size is 2 for consecutive integers from 
12 to 20. To choose a good soft threshold, we utilized the 
“WGNCA” package’s pickSoftThresgold function. Set 
deepSplit to 2, the minimum number of module genes to 
200, then grouped the genes into various modules. The 
following modules are combined with the truncation 
value of 0.3 at the same time. And lastly, each module 
was linked to a phenotype. 
 
Gene ontology (GO) enrichment analysis 
 
GO (Gene Ontology) is a database produced by the 
Gene Ontology Consortium, seeking to establish a 
database relevant to various species, which can define 
and describe the activities of genes and proteins and is 
applicable to various species. Biological Process (BP), 
Cellular Component (CC), and Molecular Function 
(MF) are the three categories. The GO enrichment 
analysis was performed using the enrichGO function 
from the ClusterProfile package. We extract the top 10 
signaling pathways with the smallest p-value for 
display. 
 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis 
 
The KEGG (Kyoto Encyclopedia of Genes and 
Genomes) database included metabolic pathways 
database, hierarchical categorization database, gene 
database, genome database, etc. It was a database that 
systematically analyzed gene functions, genomic 
information, and functional information. By comparing 
the examined genes with the pathway gene set in the 
database, the enriched pathways were produced. The 
KEGG enrichment analysis employed the ClusterProfile 
R package's enrichKEGG function. We extract the top 
10 signaling pathways with the smallest p value for 
display. p < 0.05 and the Log |FC| > 0 are thought to be 
statistically significant. 
 
Protein-protein interaction (PPI) network analysis 
 
Proteins that interact with one another and take part in 
numerous parts of life processes, such as biological 
signal transduction, gene expression regulation, energy 
and substance metabolism, and cell cycle regulation, 
make up protein-protein interaction networks (PPI). 
Understanding the working principle of proteins in 
biological systems, the reaction mechanism of 
biological signals, the metabolism of energy and 
materials in particular physiological states like diseases, 
as well as the functional relationships between proteins, 
all depend on systematic analysis of the interaction 
between a large number of proteins in biological 
systems. In this study, the STRING database 

(https://cn.string-db.org/) was used for PPI analysis. 
The top 20 genes’ interactions were shown using the 
cytoHubba plugin of the Cytoscape program, which was 
used to visualize the results. 
 
Pseudo-time series analysis 
 
To examine the state of cell differentiation, the 
“monocle2” software was frequently used for cell 
differentiation trajectory analysis. In this study, we 
screened genes with average expression more than 0.1 
for further investigation and chose a particular cell 
subpopulation for this analysis. We used the 
“reduceDimension” function to sort the cell 
differentiation trajectory and decrease the dimension 
with the parameters max components = 2, method = 
DDRTree, and “reduceDimension” function. Cell 
differentiation was displayed using a UMAP map. 
 
PCR experiment 
 
Peripheral blood samples from 30 patients with 
ischemic stroke and 30 healthy controls were separated 
by density gradient centrifugation. We then cleaved and 
homogenized the organs in Trizol (Vazyme Biotech, 
Nanjing, China), extracted RNA, and synthesized 
cDNA using reverse transcription reagent (Vazyme 
Biotech). PCR analysis was then performed using 
SYBR Green Premix reagent (Vazyme Biotech) and 
PCR system (Applied Biosystems, Foster City, CA, 
USA). Relative gene expression was calculated by 
2−ΔΔCt method. Supplementary Table 1 showed the 
sequence of primers we used. 
 
Statistical analysis 
 
In single-cell sequencing data, we searched for 
differentially expressed genes associated with stroke by 
using the FindMarkers function of the “Seurat” 
package. In transcriptome data, WGCNA analysis was 
used to search for gene modules associated with stroke. 
The difference in gene expression between stroke and 
normal samples was analyzed using the rank sum test. 
All analyses were performed using R software, version 
4.0.5. Unless otherwise noted, p < 0.05 was defined as 
statistically significant. 
 
RESULTS 
 
Our entire workflow was summarized in Supplementary 
Figure 1. 
 
Single cell sequencing data analysis 
 
After quality control of ischemic stroke and control 
samples, we obtained a total of 18,676 genes and 58,469 
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cells. As shown in Figure 1A, we found a fairly uniform 
distribution of cells in the three ischemic stroke samples 
and the three normal control samples, with no 
significant batch effect. As shown in Figure 1B, the cell 
cycle had no effect on our subsequent analysis. As 
shown in Figure 1C, the blue cells were cells in the 
normal control group, while the red cells were cells in 
ischemic stroke group, showing obvious heterogeneity 
among them. Through cluster analysis, we coclustered 
all the cells into 34 clusters. Then, we annotated the 
cells through SingleR and CellMarker website, as 
shown in Figure 1D. A total of 8 cell types have been 
annotated, namely fibroblast cells, pre-B cell CD34, 
neutrophils cells, BM, keratinocytes, macrophage, 
neurons and MSC. Through differential expressed gene 
analysis, ischemic stroke-related genes were found. As 
shown in Figure 1E, the first 5 genes that were 
significantly up-regulated were NCL, ARPC2, NOP58, 
HSPE1 and HSPD1, while the first 5 genes that were 
significantly down-regulated were PLTP, SLC40A1, 
SERINC3, LMO2 and GPR34. 
 
Weighted coexpression network analysis (WGCNA) 
 
To further explore differences between ischemic stroke 
and normal control samples in transcriptome 
sequencing, WGCNA analysis was then performed. In 

the WGCNA of GSE16561, we found that the optimal 
soft threshold value was 7, and the data matched the 
power law distribution, which was suitable for 
subsequent analysis. As shown in Figure 2A, 2B, all 
genes were coclustered into 7 non-gray modules, 
among which black and red modules were most closely 
associated with ischemic stroke, and p < 0.05, with a 
correlation of 0.56 and 0.54, respectively. Therefore, 
the genes of the black and red modules were included 
in the follow-up analysis. There were 4909 genes in 
total, among which 1219 were in black module and 
3690 were red genes. In the analysis of GSE58294 
dataset, we found that the optimal soft threshold was 
also 7. As shown in Figure 2C, 2D, all genes were 
coclustered into 7 non-gray modules, among which 
blue and greenyellow modules were most closely 
associated with ischemic stroke, and p < 0.05, with a 
correlation of 0.77 and 0.72, respectively. Therefore, 
the genes of blue and greenyellow modules were 
included in the follow-up analysis, and there was a total 
of 4260 genes, including 3926 genes of black and 334 
genes of red. In order to find genes relatively 
associated with ischemic stroke, the intersection of 
genes obtained from single-cell analysis and genes 
obtained from transcriptome WGCNA analysis was 
performed, as shown in Figure 2E, with 385 
intersection genes in total. 

 

 
 
Figure 1. Single cell sequencing analysis. (A) No significant batch effect was observed. (B) The cell cycle had no effect on our 
subsequent analysis. (C) The heterogeneity between ischemic stroke group and normal control group. (D) 34 clusters were annotated as 
different cell types. (E) The first 5 genes that were significantly up-regulated were NCL, ARPC2, NOP58, HSPE1 and HSPD1, while the first 5 
genes that were significantly down-regulated were PLTP, SLC40A1, SERINC3, LMO2 and GPR34. (Abbreviations: MACO: middle cerebral 
artery occlusion group; Sham: sham operation group). 
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Figure 2. Weighted coexpression network analysis (WGCNA). (A, B) WGCNA in GSE16561. All genes were coclustered into 7 non-
gray modules, among which black and red modules were most closely associated with ischemic stroke, and p < 0.05, with a correlation of 
0.56 and 0.54, respectively. (C, D) WGCNA in GSE58294. All genes were coclustered into 7 non-gray modules, among which blue and 
greenyellow modules were most closely associated with ischemic stroke, and p < 0.05, with a correlation of 0.77 and 0.72, respectively. (E) 
The Venn intersection of genes obtained from single-cell analysis and genes obtained from transcriptome WGCNA analysis. 
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Enrichment analysis and protein-protein interaction 
network construction 
 
To further clarify the mechanism of action mediated by 
these 385 key genes in ischemic stroke, enrichment 
analysis was performed. As is shown in Figure 3A, GO 
enrichment analysis showed that these genes were 
mainly associated with protein-containing complex 
disassembly, cellular protein complex disassembly, 
translational elongation and other related functions. 
KEGG enrichment analysis showed that these genes 
were mainly neurodegeneration-multiple diseases, 
Huntington disease, Amyotrophic lateral sclerosis and 
other pathways (Figure 3B). Subsequently, in order to 
find the hub gene among these genes, PPI network 

analysis was conducted, as shown in Figure 3C. 
CytoHubba plugin allowed us to see the patterns of 
interactions between the top 20 genes and rank them 
from most important to least important. MRPS11 and 
MRPS12 were the two hub genes (Figure 3C). 
 
Expression analysis of hub genes 
 
As shown in Figure 4A–4D, we found that both 
MRPS11 and MRPS12 were down-regulated in 
ischemic stroke patients in the GSE16561 and 
GSE58294 data sets (p < 0.001). And we found that, as 
shown in Figure 4E, 4F, expression analysis of 
MRPS11 and MRPS12 in single cell data showed that 
they were mainly in the pre-B cell CD34, especially 

 

 
 
Figure 3. Enrichment analysis and protein-protein interaction network construction. (A) GO enrichment analysis. (B) KEGG 
enrichment analysis. (C) PPI network analysis. MRPS11 and MRPS12 are the two hub genes. 



www.aging-us.com 6352 AGING 

 
 
Figure 4. Expression analysis of hub genes. (A–D) MRPS11 and MRPS12 were down-regulated in ischemic stroke patients in the 
GSE16561 and GSE58294 data sets (p < 0.001). (E, F) Expression analysis of MRPS11 and MRPS12 in single cell data. 
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MRPS12 was more obvious, suggesting that MRPS11 
and MRPS12 may play an important role in ischemic 
stroke patients. 
 
Pseudo-time series analysis 
 
pre-B cell CD34 plays an important role in ischemic 
stroke, and the above analysis showed that both 

MRPS11 and MRPS12 were mainly expressed in pre-B 
cell CD34. Therefore, we extracted pre-B cell CD34 
cells from ischemic stroke samples and used the 
“monocle2” package for pseudo-time series analysis. As 
shown in Figure 5A, 5B, cells differentiate from dark 
blue to light blue. pre-B cell CD34 cells have five 
differentiation states, among which state 1 is early 
differentiation, and state 3 and state 4 is late 

 

 
 
Figure 5. Pseudo-time series analysis. (A, B) Cells differentiation diagram. pre-B cell CD34 cells have five differentiation states, among 
which state 1 is early differentiation, and state 3 and state 4 is late differentiation. (C–F) During the differentiation of pre-B cell CD34 cells, 
the expression of MRPS11 did not change significantly, while the expression of MRPS12 showed a trend of gradual decline. 
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differentiation. As shown in Figure 5C–5F, during the 
differentiation of pre-B cell CD34 cells, the expression 
of MRPS11 did not change significantly, while the 
expression of MRPS12 showed a trend of gradual 
decline. 
 
Immune cell infiltration analysis 
 
Through the above analysis, it is found that the down-
regulation of MRPS12 may play an important role in the 
occurrence and development of ischemic stroke, and 

may be the target of its diagnosis and treatment. 
Subsequently, in transcriptome sequencing data, we 
further explored the association between MRPS12 and 
immune cells in GSE58294. Figure 6A showed immune 
infiltration in ischemic stroke patients. Neutrophils cells 
accounted for more of them. As shown in Figure 6B, the 
infiltration levels of plasma cells and dendritic cells 
activated were different between the high-MRPS12 
expression group and low-MRPS12 expression group. 
Then in the correlation analysis, as shown in Figure 6C–
6G, we found that the immune cells positively associated 

 

 
 
Figure 6. Immune cell infiltration analysis. (A) The immune infiltration landscape in ischemic stroke patients. (B) The infiltration levels 
of immune cells difference between the high-MRPS12 expression group and low-MRPS12 expression group. (C–G) Correlation analysis of 
the immune cells associated with MRPS12. 
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with MRPS12 included NK cells resting, T cells CD4 
native and T cells follicular helper. Neutrophils and T 
cells CD4 memory resting were negatively correlated. 
This provided a reference for us to understand the 
mechanism of MRPS12. 
 
PCR to validate the expression of MRPS11 and 
MRPS12 
 
Finally, in order to verify the expression of MRPS11 
and MRPS12 in peripheral blood of patients with 
ischemic stroke, clinical samples were collected and 
PCR experiments were conducted. The results showed 
that compared with healthy controls, MRPS11 and 
MRPS12 were significantly down-regulated in 
peripheral blood of patients with ischemic stroke 
(Figure 7, **P < 0.01, ***P < 0.001). 
 
DISCUSSION 
 
Ischemic stroke is a medical emergency that requires 
rapid diagnosis and treatment [19]. Current diagnosis 
relies on clinical evaluation, imaging studies, and 
laboratory tests, with brain imaging being the gold 
standard [20]. The most effective treatments for 
ischemic stroke are thrombolytic therapy and 
mechanical thrombectomy, but they have a narrow time 
window for effectiveness and may not be appropriate 
for all patients [21]. Prevention through lifestyle 
changes and medication is crucial. However, limitations 
remain, such as the need for more effective preventative 
measures and new treatments for ischemic stroke, as 
well as the challenge of arriving at the hospital in time 
for effective treatment [22]. Further research is needed 

to develop new diagnostic and treatment approaches to 
improve outcomes for patients with ischemic stroke. 
 
The present study identified MRPS11 and MRPS12 as 
robust markers in transcriptomic analysis of ischemic 
stroke. MRPS11 and MRPS12 have the potential to 
serve as biomarkers for ischemic stroke diagnosis, 
either alone or in combination with other biomarkers. 
 
One potential application of MRPS11 and MRPS12 is 
as biomarkers for the diagnosis of ischemic stroke. By 
analyzing the expression of these genes, clinicians may 
be able to accurately diagnose ischemic stroke and 
distinguish it from other conditions with similar 
symptoms. Additionally, MRPS11 and MRPS12 could 
potentially serve as therapeutic targets for the treatment 
of ischemic stroke, as mitochondrial dysfunction has 
been implicated in stroke pathophysiology. 
 
Further research is needed to validate the robustness of 
MRPS11 and MRPS12 as markers for ischemic stroke 
diagnosis and as therapeutic targets. However, the 
discovery of these genes as potential markers in 
transcriptomic analysis of ischemic stroke is a 
significant finding that has the potential to improve our 
understanding of this condition and lead to new 
diagnostic and treatment approaches. 
 
MRPS11 and MRPS12 belong to the mitochondrial 
ribosomal proteins (MRPS) family, which is involved in 
the assembly of mitochondrial ribosomes and protein 
synthesis within the mitochondria [23–25]. 
Mitochondrial ribosomes are distinct from the 
ribosomes in the cytoplasm, and the MRPS family plays 

 

 
 
Figure 7. PCR experiment. (A, B) MRPS11 and MRPS12 were significantly down-regulated in peripheral blood of patients with ischemic 
stroke (**p < 0.01, ***p < 0.001). 
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a critical role in the translation of mitochondrial DNA-
encoded proteins [26]. 
 
Research on the MRPS family has focused on their role 
in mitochondrial function and their potential as 
therapeutic targets for various diseases [27]. Changes in 
the expression of MRPS genes have been linked to 
various conditions, including cancer, cardiovascular 
disease, and neurodegenerative diseases [28]. 
 
In particular, MRPS11 and MRPS12 have been 
implicated in the pathogenesis of cancer. A study found 
that the interaction between LncRNA ZFHX4-AS1 and 
MRPS11 may be related to the immune 
microenvironment in ovarian cancer and promote 
ovarian cancer progression [29]. Another study found 
that the expression of MRPS12 is positively correlated 
with the infiltration of macrophages and neutrophils in 
ovarian cancer, and MRPS12 is a potential oncogene 
and a promising prognostic candidate in ovarian cancer 
[30]. 
 
Multiomics analysis, a comprehensive approach that 
integrates multiple omics technologies such as 
genomics, transcriptomics, proteomics, and 
metabolomics, holds significant promise in the field of 
ischemic stroke research. By examining various 
molecular levels simultaneously, multiomics analysis 
enables a deeper understanding of the complex 
pathophysiological mechanisms underlying ischemic 
stroke. It allows the identification of key genetic 
variants, gene expression patterns, protein alterations, 
and metabolite profiles associated with stroke, 
providing valuable insights into the molecular pathways 
involved in the disease. This integrative approach can 
aid in the discovery of novel biomarkers for early 
diagnosis, prognosis, and personalized treatment 
strategies, ultimately leading to improved patient 
outcomes and the development of targeted therapeutic 
interventions for ischemic stroke. 
 
Overall, the MRPS family, including MRPS11 and 
MRPS12, plays a critical role in mitochondrial function 
and has been linked to various diseases. The 
identification of MRPS11 and MRPS12 as potential 
markers in transcriptomic analysis of ischemic stroke 
highlights the importance of these genes in neurological 
disorders and their potential as therapeutic targets. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 

 
 

Supplementary Figure 1. The flow chart. 
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Supplementary Table 
 
Supplementary Table 1. Oligonucleotides used in research. 

Oligonucleotides Nucleotide sequence (5′–3′) 
Primer 

GAPDH 
Forward: GGCCTCCAAGGAGTAAGACC 
Reverse: AGGGGAGATTCAGTGTGGTG 

MRPS11 
Forward: GGACTTGGCCCCAGACAG 
Reverse: GCCGCGTTCTGTTCAACTTT 

MRPS12 
Forward: CCAGAAAGTCCTGAGAGCGG 
Reverse: CAG0AGCTGGGCCACAAGTTA 

 
 


