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INTRODUCTION 
 

As a major global health problem, heart failure (HF) 

exhibits progressive loss of heart function, which results 

in unmet metabolic and oxygen needs, and eventually 

leads to inevitable organ failure and death [1]. The 

etiology of HF varies. Hemodynamic overload-induced 

pathological hypertrophy is typically the beginning of 

HF. However, sustained cardiac hypertrophy eventually 

slides into the abyss of HF. However, despite updated 

knowledge and new technologies have been introduced 

into clinical practice, remedies to effectively reverse 

cardiac hypertrophy and HF remain lacking [2]. This 

highlights the significance of exploring the molecular 

mechanisms of cardiac hypertrophy, which may 

promote drug discovery for HF. 

 

Single-cell RNA sequencing (scRNA) has been widely 

performed to clarify the cell heterogeneity and develop 

cell-type–targeted intervention during the progress of 

HF. The heterogeneity of cardiomyocytes from four 

cardiac chambers and the roles of noncardiomyocytes 

among normal, failed, and treated human hearts were 

revealed by scRNA [3]. Myocardial infarction-induced 
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ABSTRACT 
 

Background: Heart failure (HF) remains a huge medical burden worldwide. Pathological cardiac hypertrophy is 
one of the most significant phenotypes of HF. Several studies have reported that the TGF-β pathway plays a 
double-sided role in HF. Therefore, TGF-β–related genes (TRGs) may be potential therapeutic targets for cardiac 
hypertrophy and HF. However, the roles of TRGs in HF at the single-cell level remain unclear. 
Method: In this study, to analyze the expression pattern of TRGs during the progress of cardiac hypertrophy 
and HF, we used three public single-cell RNA sequencing datasets for HF (GSE161470, GSE145154, and 
GSE161153), one HF transcriptome data (GSE57338), and one hypertrophic cardiomyopathy transcriptome data 
(GSE141910). Weighted gene co-expression network analysis (WGCNA), functional enrichment analysis and 
machine learning algorithms were used to filter hub genes. Transverse aortic constriction mice model, CCK-8, 
wound healing assay, quantitative real-time PCR and western blotting were used to validate bioinformatics 
results. 
Results: We observed that cardiac fibroblasts (CFs) and endothelial cells showed high TGF-β activity during the 
progress of HF. Three modules (royalblue, brown4, and darkturquoize) were identified to be significantly 
associated with TRGs in HF. Six hub genes (TANC2, ADAMTS2, DYNLL1, MRC2, EGR1, and OTUD1) showed 
anomaly trend in cardiac hypertrophy. We further validated the regulation of the TGF-β-MYC-ADAMTS2 axis on 
CFs activation in vitro. 
Conclusions: This study identified six hub genes (TANC2, ADAMTS2, DYNLL1, MRC2, EGR1, and OTUD1) by 
integrating scRNA and transcriptome data. These six hub genes might be therapeutic targets for cardiac 
hypertrophy and HF. 
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heart injury could be relieved to some extent by in situ 

myocardial injection of ACKR1+ endothelial cells (ECs) 

(3). Cardiac fibroblasts (CFs) heterogeneity during HF 

development in the mice model was also elucidated by 

scRNA, suggesting the scar-healing effect of collagen 

triple helix repeat containing 1-expressed CFs [4]. 

Furthermore, scRNA exhibited great advantages over 

immune cell infiltration analysis. In a transverse aortic 

constriction (TAC) mice model, highly expressed CD72+ 

macrophages exerted pro-inflammatory and aggravated 

injury effects [5], which were also confirmed in patients 

with dilated and ischemic cardiomyopathy. 

 

The TGF-β signaling pathway regulates ventricular 

remodeling, cardiac fibrosis, and matrix metabolism 

during the progress of hemodynamic overload [6, 7]. 

Moreover, TGF-β pathway activation could exert an 

anti-inflammatory effect, promote myofibroblast trans-

differentiation, and speed up matrix synthesis in 

infarcted hearts [8–10]. To the best of our knowledge, 

no studies focused on the TGF-β–related genes (TRGs) 

in HF at a single-cell level to date. Therefore, a 

comprehensive analysis of TRGs in HF may provide 

new insights into cardiac hypertrophy and HF from 

basic to clinical studies. 

 

In this study, scRNA data were used to identify 

differentially expressed genes (DEGs) between the high 

and low TGF-β activity groups based on 321 TRGs. By 

integrating scRNA data and using multiple 

bioinformatics tools, including single-sample gene set 

enrichment analysis (ssGSEA) and weighted gene co-

expression network analysis (WGCNA) in bulk 

sequencing data, we identified 226 genes, which were 

further filtered using machine learning and validated in 

hypertrophic cardiomyopathy dataset. A total of six hub 

genes (TANC2, ADAMTS2, DYNLL1, MRC2, EGR1, 

and OTUD1) were considered cardiac hypertrophy and 

HF regulators. We selected ADAMTS2 for further 

experimental validation and confirmed that it was 

downregulated in the TAC heart tissue. We further 

observed that ADAMTS2 overexpression could reverse 

the overactivation of TGF-β–induced CFs. Targeting 

the TGF-β-MYC-ADAMTS2 might be a novel therapy 

to inhibit CF overactivation and reverse cardiac 

hypertrophy. 

 

MATERIALS AND METHODS 
 

Quality control, batch effect correction, and cell type 

identification of single-cell sequencing data 

 

The human heart scRNA datasets (GSE161470, 

GSE145154, and GSE161153) were downloaded from 

the public GEO database (https://www.ncbi.nlm.nih.gov/ 

geo/). Four left ventricular control samples from 

GSE161470, three left ventricular HF samples from 

GSE145154, and one left ventricular sample with  

HF from GSE161153 were filtered out for further 

analysis using R (version 4.2.0) and Seurat package 

(version 4.1.1). 

 

Large gene expression matrices were formed using the 

“merge” function. Cells with >500 genes, <5,000 genes, 

and <20% mitochondrial genes were retained. Gene 

expression lists were normalized using the 

“NormalizeData” function and further scaled. 

Subsequently, the “vst” method was used for each 

sample to identify 2,000 highly variable genes. 

According to the highly variable genes, principal 

component analysis was applied to identify significant 

principal components (PCs), which were visualized 

using the ElbowPlot function. 

 

Since scRNA data were collected from three different 

research groups, the “Harmony” package (version 0.1.0) 

was used to correct the batch effect. We selected 20 PCs 

to execute t-distributed stochastic neighbor embedding 

(t-SNE) analysis. Fifteen cell clusters were classified 

using the “FindClusters” function with a resolution of 

0.5. DEGs for each cell cluster were screened using the 

“FindAllMarkers” function with a threshold of 0.25. 

The top five DEGs for cell clusters, previously reported 

article [11], and CellMarker database (http://bio-

bigdata.hrbmu.edu.cn/CellMarker/) were used to 

annotate cell types. 

 

TRG score 

 

We collected eight TGF-β–related gene sets from 

several public databases, including GO:0007179  

from AmiGO2 (http://amigo.geneontology.org/amigo), 

Signaling by TGF-beta Receptor Complex from 

Reactome (https://reactome.org/), TGF-beta signaling 

pathway from KEGG (https://www.genome.jp/ 

kegg/pathway.html), PID_TGFBR_PATHWAY, 

BIOCARTA_TGFB_PATHWAY, WP_CANONICAL_ 

AND_NONCANONICAL_TGFB_SIGNALING, WP_ 

TGFBETA_RECEPTOR_SIGNALING, and WP_ 

TGFBETA_SIGNALING_PATHWAY from GSEA 

(http://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp). 

Thus, a total of 321 TRGs were collected 

(Supplementary Table 1). 

 

We used the “AddModuleScore” function to score the 

TRG expression levels in every cell. Cells with scores 

greater than 75% quantile were deemed as the high 

TGF-β activity group, and those with scores lower than 

75% quantile were the low TGF-β activity group. DEGs 
between those two groups were calculated using the 

“FindMarkers” function. Subsequently, the TGF-β 

scores of each cell were mapped to the t-SNE 

https://www.ncbi.nlm.nih.gov/geo/
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embedding and visualized using the ggplot2 package 

(version 3.3.6). 

 

Transcriptome data download and processing 

 

The microarray data of GSE57338 (177 and 136 human 

left ventricular heart samples with and without HF) and 

RNA-seq data of GSE141910 (28 and 166 healthy 

human left ventricular samples with and without cardiac 

hypertrophy, respectively) were obtained from the GEO 

database. DEGs of datasets were calculated using 

“limma” package (version 3.52.1) in R. The threshold 

for DEGs was logFC > mean (abs (logFC) + 2 * SD 

(logFC)) and P < 0.05. 

 

ssGSEA and WGCNA 

 

The ssGSEA was used to calculate the TGF-β score of 

each sample in GSE57338 based on the 321 TRGs. 

 

In this study, WGCNA was performed to determine the 

gene modules most related to TGF-β scores. Briefly, 

following soft-thresholding power selection, the 

adjacency matrix was formed and turned into 

topological overlap. The clustering tree was plotted 

using the hierarchical clustering method. Genes in the 

expression data of GSE57338 were aligned to different 

modules (minModularSize = 50), and similar modules 

were merged using the “DynamicTreeCut” algorithm 

(cutHeight = 0.3). The “LabeledHeatmap” function was 

used to depict the relationship between different 

modules and TGF-β scores. The random seed was set  

as 123. 

 

Gene ontology (GO), Kyoto Encyclopedia of Genes 

and Genomes (KEGG), and GSEA analysis 

 

“EnrichGO,” “EnrichKEGG,” and “gseKEGG” 

functions from clusterProfiler package (version 4.4.2) 

were applied for GO, KEGG, and GSEA, respectively. 

P < 0.05 was considered statistically significant. 

 

Machine learning and hub gene verification 

 

To further ascertain the hub genes, three machine 

learning methods, including the least absolute shrinkage 

and selection operator (LASSO) regression by glmnet 

package (versions 4.1–4), support vector machine-

recursive feature elimination (SVM-RFE) by e1071 

package (versions 1.7–11), and Random Forest by 

randomForest package (versions 4.7–1.1) were used. 

 

The gene expression matrix of GSE57338 and 
corresponding grouping information were uploaded into 

these three algorithms. The random seed was set as 

12345. Genes that came from the intersection of three 

algorithms were considered hub genes and subjected to 

further analysis. 

 

Receiver operator characteristic curve (ROC) analysis 

was applied in GSE141910 to test the discrimination 

ability of hub genes for hypertrophic cardiomyopathy. 

Genes with an area under the ROC curve (AUC) of >0.7 

were considered cardiac hypertrophy and HF-related 

hub genes. 

 

Construction of transcription factors (TFs) regulatory 

network 

 

Differentially expressed transcription factors (DETFs) 

in GSE57338 were filtered out based on the TFs  

list downloaded from the Animal Transcription  

Factor Database (http://bioinfo.life.hust.edu.cn/ 

AnimalTFDB/#!/). The “cor.test” function was used to 

calculate the correlation between DETFs and hub 

genes selected above. The thresholds were |correlation 

coefficient| > 0.4 and P < 0.05. Cytoscape software 

(version 3.8.2) was used to visualize the transcription 

regulatory network. The flow chart of this study is 

presented in Figure 1. 

 

Cell culture and treatment 

 

CFs were isolated from neonatal rats. Briefly, heart 

ventricles were dissected, cut into pieces as small as 

possible, and digested with 0.1% Collagenase II 

(LS004176, Worthington, OH, USA) for 15 min at 37° 

C. The supernatant was collected and mixed with 

culture medium (high-glucose DEME with 10% FBS, 

1% penicillin/streptomycin). This digestion procedure 

was repeated several times until tissue sediments almost 

disappeared. Subsequently, all the collected cell 

suspension was filtered through a 100-μm cell strainer 

and centrifuged at 1,500 rpm for 3 min. Cells were 

resuspended with a culture medium and placed in a cell 

incubator for 120 min. Newborn rat cardiomyocytes 

(NRCMs) were in the supernatant, whereas the 

remaining adherent cells were in the CFs. The cell 

medium was changed every other day. The passage of 

2–3 CFs would be used for further experiments. 

 

To simulate the activated condition of CFs, 10 μg/L 

TGF-β1 (HY-P70648, MedChemExpress, NJ, USA) 

was added to the cell medium. CFs were collected for 

the experiment at designated time points. The control 

group was added with the same volume of PBS. 

 

Cell viability and wound healing assay 

 
CFs were seeded in 96-well culture plates with 10,000 

cells per well. CCK-8 reagent (Dojindo, Japan) was 

added to calculate the cell viability at 490 nm 

http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/
http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/
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absorbance using a microplate reader (BioTek, VT, 

USA). 

 

Wound healing assay was used to test the migration 

ability of CFs in different groups. CFs were cultured in 

6-well plates to approximately 80% confluence. 

Artificial scratches were formed using a 100-μL pipette 

tip. Suspended cells were washed away using PBS. 

Light microscope (IX70, Olympus) was used to view 

the cell migration distance at 24 h. 

 

TAC model 

 

To induce cardiac hypertrophy according to one reported 

study, TAC surgery was performed [12]. Briefly, 8-week 

C57BL/6 mice were anesthetized with 2% isoflurane 

mixed with 0.5 L/min 100% O2. The sternum was cut to 

the second rib to expose the surgical field. After gently 

separating the thymus tissue, two loose knots were tied 

around the transverse aorta using 6-0 silks. The first knot 

was tied against a 27-G needle placed parallel to the 

transverse aorta, followed by the second knot and quick 

needle removal. The chest and skin were closed using 5-

0 silks. In the sham group, the entire procedures were 

performed, except for aortic ligation. 

 

Cell transfection 

 

CFs were transiently transfected using Myc siRNA  

(si-Myc), Adamts2 siRNA (si-Adamts2), siRNA negative 

 

 
 

Figure 1. Flow chart of the analysis. DEGs, differentially expressed genes; GO, gene ontology annotation; KEGG, Kyoto Encyclopedia of 

Genes and Genomes; ssGSEA, single-sample gene Set enrichment analysis; WGCNA, weighted gene co-expression network analysis; LASSO, 
least absolute shrinkage and selection operator; SVM-RFE, support vector machine-recursive feature elimination; TANC2, tetratricopeptide 
repeat, ankyrin repeat, and coiled-coil containing 2; ADAMTS2, ADAM metallopeptidase with thrombospondin type 1 motif 2; DYNLL1, dynein 
light chain LC8-type 1; MRC2, mannose receptor C type 2; EGR1, early growth response 1; OTUD1, OTU deubiquitinase 1. 
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control (si-NC), Myc plasmid (oe-Myc), Adamts2 

plasmid (oe-Adamts2), empty plasmid (oe-NC) using 

INTERFERin (Polyplus, Illkirch, France), and 

jetOPTIMUS (Polyplus, Illkirch, France) according to 

the manufacturer’s protocols. After 8 h, the cell medium 

was replaced with a fresh medium. After 48 h, the cells 

were collected for subsequent experiments. The si-Myc 

sequence was 5′-AACGUUAGCUUCACCAACAUU-

3′. The si-Adamts2 sequence was 5’-CCCACUGUAAA 

GUGGUGAAdTdT-3’. The si-NC sequence was 5′-AA 

TTCTCCGAACGTGTCACGT-3′. si-Myc, si-Adamts2, 

si-NC, oe-Myc, oe-Adamts2, and oe-NC were 

synthesized and constructed by OBiO Technology 

(Shanghai, China). 

 

Real-time quantitative PCR (RT-qPCR) 

 

The total RNA was isolated from CFs and heart tissues 

using TRIzol reagent (Thermo Fisher Scientific, MA, 

USA). The first-strand cDNA was synthesized from 

2,000 ng of the total RNA using PrimeScript™ RT 

Master Mix (TaKaRa, Japan). The mRNA levels of 

genes were determined using real-time qPCR analysis 

on a LightCycler 480 II system (Roche, Switzerland) 

using TB Green Premix Ex Taq™ II (TaKaRa, Japan). 

The levels of detected mRNA were calculated using the 

2-ΔΔCt method. 

 

Western blot analysis 

 

After treatment, cell and heart tissues were lysed with 

RIPA buffer (P0013B, Beyotime, China) and incubated 

for 30 min at 4° C. The protein solution was centrifuged 

at 12,000 rpm for 15 min at 4° C. BCA Protein Assay 

Kit (P0012S, Beyotime, China) was used to calculate 

the protein concentration. Then, 40 μg of protein were 

separated by SDS-PAGE gels and transferred to PVDF 

membranes (IPVH00010, Millipore, MA, USA). The 

membranes were then blocked with 5% defatted milk 

for 1 h and incubated with a primary antibody at 4° C 

overnight. Subsequently, the membranes were incubated 

with HRP-linked secondary antibody (1:5,000) at room 

temperature for 1.5 h. To analyze signal intensities, the 

chemiluminescent system (Affinity™ ECL kit, Affinity 

Biosciences, OH, USA) and Gel Doc XR+ Gel 

Documentation System (Bio-Rad, CA, USA) were used. 

The following were the antibodies used: anti-

ADAMTS2 (A10272, ABclonal, China), anti-Collagen I 

(66761-1-Ig, Proteintech, IL, USA), anti-α-SMA 

(14395-1-AP, Proteintech, IL, USA), and anti-GAPDH 

(60004-1-Ig, Proteintech, IL, USA). 

 

Dual luciferase reporter gene assay 

 

The three most possible binding sites between MYC 

and promoter of ADAMTS2 were predicted using the 

NCBI website (https://www.ncbi.nlm.nih.gov/gene/) 

and the JASPAR database (http://jaspar.genereg.net/). 

Subsequently, the wild-type ADAMTS2 promoter  

(0 to +2,000 bp) and three mutated ADAMTS2 

promoters were subcloned into pGL3-basic luciferase 

reporter vectors to construct pGL3-WT-ADAMTS2, 

pGL3-MUT1-ADAMTS2 (+1,139 to +1,150 bp), 

pGL3-MUT2-ADAMTS2 (+607 to +618 bp), and 

pGL3-MUT3-ADAMTS2 (+1,919 to +1,930 bp). 

These four vectors were co-transfected with the  

MYC overexpression vector (OE-MYC) into 293  

cells, respectively. The Dual-Lumi™ Luciferase 

Reporter Gene Assay Kit (RG089S, Beyotime, China) 

was used to detect the firefly luciferase activity 

(relative to the Renilla luciferase activity) of the target 

reporter gene. 

 

Chromatin immunoprecipitation (ChIP) 

 

The ChIP kit (Absin, abs50034) was used to perform 

ChIP experiments. First, cells were crosslinked and 

fixed by formaldehyde, and the DNA was broken into 

suitable fragments by ultrasonography. Subsequently, 

the corresponding antibody was used to bind the 

specific DNA fragment. Finally, DNA fragments were 

purified using a DNA purification column. An 

antibody against MYC for ChIP was obtained from 

Proteintech (67447-1-Ig). The enrichment efficiency of 

the binding site was determined using qRT-PCR. The 

primes (forward: 5’-AGGTGTCCTTGGATGCTTGG-

3’ and reverse: 5’-TATGCATTCTGTCCTCCCGC-3’) 

were designed for site 1. The distal primers  

(forward: 5′-CACCCAAGATGACCCGGAAA-3′ and 

reverse: 5′-GTGAGGACAAGTCAGCGTCA-3′) were 

designed as the control for site 1. The distance  

from the transcription start site for ADAMTS2 is 

4,000 bp. 

 

Statistical analyses 

 

Statistical analyses were performed using GraphPad 

Prism 9.0. At least three independent experiments were 

performed for each assay. Unpaired, two-tailed t-test was 

used to compare the two groups. Data from multiple 

groups were analyzed using one-way analysis of variance 

(ANOVA). To assess intergroup differences, two-way 

ANOVA was used. P < 0.05 was considered statistically 

significant. 

 

Data availability 

 

All the datasets used in this study can be downloaded 

from online GEO database, including GSE161470 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

SE161470), GSE145154 (https://www.ncbi.nlm.nih.gov/ 

geo/query/acc.cgi?acc=GSE145154), GSE161153 

https://www.ncbi.nlm.nih.gov/gene/
http://jaspar.genereg.net/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161470
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161470
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145154
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145154
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(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

SE161153), GSE57338 (https://www.ncbi.nlm.nih.gov/ 

geo/query/acc.cgi?acc=GSE57338), and GSE141910 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G

SE141910). The raw data supporting the conclusions of 

this article will be made available by the authors, without 

undue reservation. 

 

RESULTS 
 

scRNA profile of human heart tissue 

 

The scRNA data of 46,180 cells from four heart tissues 

without failure and four HF samples were analyzed 

(Figure 2A). After raw data processing and filtration 

(Supplementary Figure 1A–1D), a total of 39,995 cells 

were retained. Followed by gene matrix normalization, 

15 cell clusters were identified using 20 PCs (Figure 2B 

and Supplementary Figure 1E). 

 

Based on marker genes (Figure 2C and Supplementary 

Table 2) and top five DEGs (Figure 2D and 

Supplementary Table 3), cells could be assigned to  

10 known kinds of different cells (Figure 2E). The 

proportion of each cell type showed great heterogeneity 

among the control and HF samples (Figure 2F). 

TGF-β scores of heart cell clusters 

 

To illuminate the expression pattern of TRGs in cell 

clusters, we used the “AddModuleScore” function to 

calculate the TGF-β score of each cell based on the 

collected 321 TRGs. 

 

Cells expressing more TRGs showed higher TGF-β 

scores. As shown in Figure 3A, more cells in the HF 

samples are expressing TRGs, indicating that TGF-β–

related pathways are activated in the HF group. 

Particularly, CFs and ECs were the main target cell 

clusters of TRGs (Figure 3B, 3C). 

 

GO and KEGG were used to investigate the functional 

characteristic of DEGs from CFs and ECs. For  

CFs, the expression features were mainly related to 

histone modification, proteasomal protein catabolic 

process, Wnt signaling pathway (Figure 3D), 

endocytosis, focal adhesion, and protein processing in 

the endoplasmic reticulum (Figure 3E). For ECs, 

amoeboid-type cell migration, ribonucleoprotein 

complex biogenesis, viral process (Figure 3F), 

pathways of neurodegeneration-multiple diseases, 

coronavirus disease, and Alzheimer disease (Figure 3G) 

were the main enrichment results. 

 

 
 

Figure 2. Single-cell RNA sequencing shows the heterogeneity of the heart tissue. (A) Pipeline of single-cell RNA sequencing data 

processing. (B) t-SNE plot representing the 15 clusters across 39,995 cells from four controls and four heart failure samples. (C) Violin plots 
showing the expression of marker genes for the 15 cell clusters. (D) Dot plot showing the expression of the top five DEGs in each cell type.  
(E) t-SNE plot representing the 10 cell clusters after annotation. B, B cells; CM, cardiac muscle cells; EC, endothelial cells; EndoC, endocardial 
endothelial cells; FB, fibroblasts; myeloid, myeloid cells; neuronal, neurogenic cells; NK, natural killer cells; T, T cells. (F) Bar plot showing the 
proportion of cell types in each sample. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161153
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161153
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57338
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57338
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141910
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141910
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DEGs of HF from transcriptome data 

 

The transcriptome dataset GSE57338 (136 controls and 

177 HF samples) was used to explore the gene 

expression features of HF at the tissue level. The 

thresholds for DEGs were |logFC| > 0.394 and P < 0.05. 

A total of 414 upregulated and 362 downregulated 

DEGs were selected (Supplementary Table 4). The 

volcano map and heatmap for these DEGs are presented 

in Figure 4A, 4B. 

 

 
 

Figure 3. TGF-β score heart failure cell clusters. (A) t-SNE plot showing the high and low TGF-β activity in the control and heart failure 
samples. (B) TGF-β score for each cell cluster. (C) Heatmap showing the TGF-β activity. (D, E) GO and KEGG enrichment analyses of DEGs for 
CFs. (F, G) GO and KEGG enrichment analyses of DEGs for ECs. 
 

 
 

Figure 4. Transcriptome data analysis for heart failure. (A) Volcano plot of DEGs for no failure and heart failure samples. (B) Heatmap of 

DEGs for no failure and heart failure samples. (C, D) GO and KEGG enrichment analyses of DEGs for no failure and heart failure samples. 
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GO and pathway enrichment analyses showed that most 

of these DEGs were focused on extracellular matrix 

organization, extracellular structure organization, muscle 

system process (Figure 4C), chemokine signaling 

pathway, influenza A, and phagosome (Figure 4D). 

 

TGF-β activity-related gene modules in transcriptome 

data 

 

ssGSEA was used to score each sample of GSE57338 

based on TRGs. The TGF-β scores were shown as a 

circular heatmap (Figure 5A). To seek the most 

significant gene modules related to TRGs, gene matrix 

and score information were input to WGCNA. The soft-

thresholding power of five was selected (Figure 5B), 

and all the genes could be allotted into 30 modules 

(Figure 5C, 5D). Among them, three gene modules 

were selected for further analysis, including royalblue 

(Figure 5E), brown4 (Figure 5F), and darkturquoize 

(Figure 5G), which were the top three modules most 

related to TGF-β scores. 

A total of 502 genes in these three modules 

(Supplementary Table 5) were uploaded to Metascape 

(https://metascape.org) for enrichment analysis. As 

shown in Figure 6A, 6B, those genes are mostly 

enriched in blood vessel development, positive 

regulation of cell migration, orexin receptor pathway, 

VEGFA-VEGFR2 signaling pathway, and muscle 

structure development. Intervertebral disc degeneration, 

reperfusion injury, myocardial ischemia, pneumonitis, 

secondary malignant neoplasm of the bone, and 

idiopathic pulmonary arterial hypertension were the 

most related diseases of the abovementioned genes 

(Figure 6C). 
 

Hub gene verification and TF regulatory network 

construction 
 

To further narrow the range of candidate hub genes, 

DEGs derived from the low and high TGF-β activity 

groups in scRNA sequencing data and genes in three 

modules from WGCNA were taken intersection. Thus, 

 

 
 

Figure 5. ssGSEA and WGCNA results. (A) Circular heatmap showing the TGF-β scores of 313 samples calculated using ssGSEA.  

(B) Analysis of the network topology for various soft-thresholding powers. (C) Clustering dendrogram of genes. (D) Heatmap showing the 
correlation between modules and TGF-β scores. (E–G) Three gene modules selected for further analysis. 

https://metascape.org/
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226 genes were filtered out (Supplementary Table 6). 

Subsequently, three machine learning algorithms, 

including LASSO (family = “binomial”, alpha=1, Figure 

6D, 6E), SVM-RFE (k=10, halve.above=50, Figure 6F), 

and random forest (ntree = 500, Figure 6G), were used to 

decrease these genes to sixteen (Supplementary Table 7). 

To test the discriminability of the sixteen genes in cardiac 

hypertrophy, boxplots (Figure 7A–7P) and ROC 

(Supplementary Figure 2) were plotted in GSE141910. 

The expression of these sixteen genes were also 

evaluated in GSE57338 (Supplementary Figure 3). Only 

six genes with AUC > 0.7, including TANC2, 

ADAMTS2, DYNLL1, MRC2, EGR1, and OTUD1, 

were retained and deemed as hub genes. The expression 

characteristics of the six hub genes at a single-cell level 

are shown in Figure 8A, 8B. ADAMTS2 and MRC2 

were mainly expressed in fibroblasts (FBs). DYNLL1 

was expressed in all cell types, except for CMs. 

Myeloids, FBs, ECs, and pericytes were the target cell 

types of ERG1. OTUD1 was mostly expressed in CMs. 

FBs and CMs showed the expression of TANC2. The 

mRNA expression levels of these six hub genes in the 

TAC_2w model were consistent with bioinformatics 

analysis (Figure 8C). The primers used for RT-qPCR are 

presented in Supplementary Table 8. 

 

To explore the transcriptional regulatory mechanisms of 

these hub genes, the DEGs in GSE57338 were taken 

intersection with the TF list acquired from the Animal 

Transcription Factor Database (Supplementary Table 9), 

and 36 differentially expressed TFs (DETFs) were picked 

up (Supplementary Table 10). The expression profiles of 

DETFs in various cell types are presented in Figure 8D. 

The correlation coefficient between DETFs and hub genes 

is shown in Supplementary Table 11. Twenty-one DETF-

hub gene pairs were visualized using Cytoscape (Figure 

8E). ADAMTS2 was at the center of the regulatory 

network. Interestingly, MYC, the predicted transcription 

regulator of ADAMTS2, is also the downstream molecule 

of the TGF-β signaling pathway. The expression 

relationship of MYC-ADAMTS2 and other TF-hub gene 

pairs in HF, respectively, are presented in Figure 8F and 

Supplementary Figure 4A–4T. Therefore, we speculated 

that the TGF-β-MYC-ADAMTS2 axis might play a role 

in the development of cardiac hypertrophy and HF, 

which needs experimental validation. 

 

 
 

Figure 6. Enrichment analysis for the three gene modules (royalblue, brown4, and darkturquoize) using Metascape  
and machine learning. (A, B) The network and bar plot of enriched terms for genes in the three gene modules. (C) The enriched 

diseases for genes in the three gene modules using the DisGeNET database. (D, E) A total of 44 genes identified using the LASSO 
regression. (F) A total of 25 genes were identified using the SVM-RFE algorithm. (G) A total of 20 genes were identified using random 
forest. 
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ADAMTS2 overexpression reverses the effect of 

TGF-β on CFs 

 

The expression of Adamts2 was evaluated in CFs and 

NRCMs. RT-qPCR and western blot revealed that the 

Adamts2 showed higher expression in CFs than that in 

NRCMs (Figure 9A, 9B). 

 

In HF, TGF-β1 not only promotes cardiac fibrosis but 

also activates the counterregulatory pathway of TGF-β 

activity [13]. Therefore, following TGF-β1 treatment  

(0, 12, 24, and 48 h), CFs were harvested, and the 

expression level of Adamts2 was detected using RT-

qPCR and western blot. As shown in Figure 9C, 9D, the 

expression levels of Adamts2 are gradually decreased at 

the mRNA and protein levels, which is consistent with 

the results in the mice TAC model. 

 

The role of Adamts2 in the responses to TGF-β1 

stimulation in vitro was also explored in CFs. CFs were 

transfected with oe-NC and oe-Adamts2 (Figure 9E), 

with CFs without TGF-β1 stimulation as a control. The 

evaluation of cell migration (Figure 9F, 9G), viability 

(Figure 9H), and Col1 and α-SMA expression (Figure 9I) 

 

 
 

Figure 7. Boxplots of the sixteen genes in hypertrophic cardiomyopathy dataset (GSE141910). (A) FLNC; (B) CCL2; (C) TANC2;  

(D) ADAMTS2; (E) MIDN; (F) PRRC1; (G) LDLR; (H) SOCS3; (I) DYNLL1; (J) RND3; (K) NOTCH2; (L) MRC2; (M) DLG1; (N) DOCK7; (O) EGR1;  
(P) OTUD1. ns P > 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001. 
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showed that upregulated Adamts2 mitigated the effects 

of TGF-β1 on CFs. In the TGF-β1–induced CFs 

transfected with si-Adamts2 (Figure 9J), the cell 

migration (Figure 9K, 9L), cell viability (Figure 9M), 

and Col1 and α-SMA expression (Figure 9N) were 

substantially enhanced. The aforementioned results 

indicated that Adamts2 overexpression reverses the 

effect of TGF-β on CFs by suppressing collagen 

production and overactivation of CFs. 

 

MYC promotes transcriptional regulation of 

ADAMTS2 

 

We first noted that patients with hypertrophic 

cardiomyopathy had lower MYC levels than the control 

group in GSE141910 (Figure 10B). Subsequently, the 

three possible binding sites between MYC and the 

promoter of ADAMTS2 were predicted by NCBI and 

the JASPAR database (Figure 10A and Supplementary 

Figure 5). A series of recombinant luciferase reporter 

vectors (wild-type or mutated promoters of 

ADAMTS2) were constructed (Figure 10C). Results 

from dual luciferase reporter assay revealed that site 1 

(CCTGTGGACCCG) in the promoter region of 

ADAMTS2 was the binding site between MYC and 

ADAMTS2 (Figure 10D). The binding ability of MYC 

to the ADAMTS2 promoter region at site 1 was further 

validated by ChIP in TGF-β1–induced CFs (Figure 

10E). These results demonstrated that ADAMTS2 was 

transcriptionally regulated by MYC in CFs. 

 

TGF-β-MYC-ADAMTS2 axis in CFs 

 

TGF-β1–treated CFs were transfected with oe-Myc or 

si-Adamts2 to analyze the regulatory effect of the TGF-

β-MYC-ADAMTS2 axis on CFs. The cell viability, 

migration, and Col1 and α-SMA expression were 

reduced by oe-Myc. However, the effects of the TGF-β1 

treatment on cell viability, migration, and relevant  

gene expression were elevated by the transfection of  

si-Adamts2 compared with the control cells. Furthermore, 

co-transfection of the oe-Myc and si-Adamts2 following 

 

 
 

Figure 8. Six hub genes and corresponding transcriptional factors. (A) t-SNE plot showing the expression characteristic of the six 

hub genes in the control and heart failure samples. (B) Heatmap showing the expression of six hub genes in each cell type. (C) Relative 
mRNA expression of the six hub genes in the 2w TAC model. * P < 0.05. (D) Heatmap showing the expression of differentially expressed 
transcriptional factors in each cell type. (E) Transcriptional factor and hub gene regulatory network. (F) Correlation diagram between MYC 
and ADAMTS2. 
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TGF-β1 treatment reduced the inhibitory effect of  

oe-Myc on cell migration (Figure 11A, 11B), cell 

viability (Figure 11C), and Col1 and α-SMA expression 

(Figure 11D, 11E). 

 

Subsequently, TGF-β1–treated CFs were co-

transfected with si-Myc and/or oe-Adamts2. We 

observed that Myc knockdown in TGF-β1–treated 

CFs improved cell migration, viability, and Col1 and 

α-SMA expression, which were restored following 

Adamts2 overexpression (Figure 11F–11J). The uncut 

membranes of western blot were showed in 

Supplementary Figure 6. Moreover, we performed 

single-gene GSEA for ADAMTS2 (Figure 11K) and 

showed that the PI3K-Akt (Figure 11L) and MAPK 

(Figure 11M) pathways might play a role in the 

 

 
 

Figure 9. Upregulation of ADAMTS2 alleviates the effect of TGF-β1 on cardiac fibroblasts. (A) The mRNA expression of Adamts2 in 

CFs and NRCMs was determined by RT-qPCR. * P < 0.05. (B) The protein expression of Adamts2 in CFs and NRCMs was determined western 
blot. * P < 0.05. (C) The mRNA expression of Adamts2 in TGF-β1 treated CFs at different time points. * P < 0.05 vs. the 0h group. (D) The 
protein expression of Adamts2 in TGF-β1 treated CFs at different time points. * P < 0.05 vs. the 0h group. (E) The overexpression of Adamts2 
in CFs was determined by western blot. (F) The migration ability of CFs was showed by wound healing assay. (G) The relative migration 
distance of Adamts2 overexpressed CFs. (H) The cell viability was calculated by CCK-8. * P < 0.05 vs. the Control group. # P < 0.05 vs. the TGF-
β group. (I) The expression of α-SMA and Col1 were determined by western blot. * P < 0.05 vs. the Control group. # P < 0.05 vs. the TGF-β 
group. (J) The downregulation of Adamts2 in CFs was determined by western blot. (K) The migration ability of CFs was showed by wound 
healing assay. (L) The relative migration distance of Adamts2 downregulated CFs. (M) The cell viability was calculated by CCK-8. * P < 0.05 vs. 
the Control group. # P < 0.05 vs. the TGF-β group. (N) The expression of α-SMA and Col1 were determined by western blot. * P < 0.05 vs. the 
Control group. # P < 0.05 vs. the TGF-β group. 
 

 
 

Figure 10. MYC transcriptionally regulates ADAMTS2. (A) Three predicted binding sites of the MYC protein in the ADAMTS2 promoter 

region are shown. (B) Boxplot showing the expression of MYC mRNA in GSE141910. * P < 0.05. (C, D) Co-transfection of the mutant ADAMTS2 
promoter recombinant vector and the MYC expression vector in 293 cells is verified using dual luciferase reporter gene assays. * P < 0.05 
versus the oe-NC group. (E) Binding of MYC to the ADAMTS2 promoters is tested using ChIP assays. * P < 0.05 versus the IgG antibody group. 
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regulatory effect of ADAMTS2 on CFs. Therefore, we 

concluded the regulatory effect of TGF-β-MYC-

ADAMTS2 on CFs. 

 

DISCUSSION 
 

Several studies have reported that TRGs are essential 

for the progression of cardiovascular disease [7]. 

However, few studies have highlighted on TRGs and 

attempted to clarify their role in cardiac hypertrophy 

and HF. To the best of our knowledge, our study is the 

first to identify TRGs suitable for further studies by 

integrating scRNA and bulk transcriptome data. 

 

In the present study, we first distinguished DEGs 

between the high and low TGF-β activity groups at a 

single-cell level. At the transcriptome data level, 

WGCNA was performed to identify gene modules most 

related to the TGF-β activity. After taking intersection, 

machine learning, ROC analysis, and transcriptional 

regulation prediction, we identified six hub genes 

(TANC2, ADAMTS2, DYNLL1, MRC2, EGR1, and 

OTUD1) and their possible TFs. Indeed, some of these 

hub genes have been shown to be related to HF. EGR1 

transcriptionally regulated the expression of mTORC1 

[13] and Kir2.1 [14] in myocardial ischemia/reperfusion 

(I/R) injury. On the basis of solid bioinformatics analysis, 

we speculated that these six genes might be potential 

therapeutic targets for cardiac hypertrophy and HF. 

 

TANC2 is predicted to be involved in dense core granule 

cytoskeletal transport, dendritic spine development,  

and morphogenesis. As a scaffolding protein for 

neurodevelopment, TANC2 could directly interact with 

mTOR and inhibit its activity to affect the neuron system 

[15]. In patients with multiple sclerosis, TANC2 could 

be engaged in inflammatory and neural repair pathways 

[16]. Meanwhile, the genetic polymorphisms of TANC2 

rs2429427 and rs1029765 were reported to be associated 

with calcium channel blocker responses in patients  

with hypertension [17]. TANC2-derived rno_circRNA_ 

002774 was downregulated in Cyclosporin A-induced 

cardiotoxicity [18], which may be a novel therapeutic 

target in autoimmune diseases and allotransplantation. 

 

 
 

Figure 11. The regulatory effect of TGF-β-MYC-ADAMTS2 axis on CFs. (A) The migration ability of CFs was showed by wound healing 
assay. (B) The relative migration distance of CFs. * P < 0.05 vs. the Control group. # P < 0.05 vs. the TGF-β1+oe-NC+si-Adamts2 group. (C) The 
cell viability was calculated by CCK-8. * P < 0.05 vs. the Control group. # P < 0.05 vs. the TGF-β1+oe-NC+si-Adamts2 group. (D) The expression 
of α-SMA and Col1 was determined by western blot. (E) The relative protein expression of α-SMA and Col. * P < 0.05 vs. the Control group. # 
P < 0.05 vs. the TGF-β1+oe-NC+si-Adamts2 group. (F) The migration ability of CFs was showed by wound healing assay. (G) The relative 
migration distance of CFs. * P < 0.05 vs. the Control group. # P < 0.05 vs. the TGF-β1+si-NC+oe-Adamts2 group. (H) The cell viability was 
calculated by CCK-8. * P < 0.05 vs. the Control group. # P < 0.05 vs. the TGF-β1+si-NC+oe-Adamts2 group. (I) The expression of α-SMA and 
Col1 was determined by western blot. * P < 0.05 vs. the Control group. # P < 0.05 vs. the TGF-β1+si-NC+oe-Adamts2 group. (J) The relative 
protein expression of α-SMA and Col. * P < 0.05 vs. the Control group. # P < 0.05 vs. the TGF-β1+si-NC+oe-Adamts2 group. (K) The ridgeplot 
for the GESA results of ADAMTS2. (L) The PI3K-Akt signaling pathway for ADAMTS2. (M) The MAPK signaling pathway for ADAMTS2. 
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ADAMTS2 is emerging as key participant in the 

pathogenesis of vascular diseases [19]. Lee, C. W et al. 

reported that ADAMTS2 was mostly expressed in 

human coronary atherosclerotic plaques, particularly in 

ECs and macrophages [19]. Rau, C. D et al. used a 

newly developed co-expression network tool to identify 

gene modules mostly related to HF traits and reported 

that Adamts2 could regulate the size of cardiomyocytes 

induced by β-adrenergic [20]. Adamts2 knockdown 

alleviated the expression of hypertrophy-related genes, 

including Nppa and Nppb [21]. In another study, 

ADAMTS2 was observed to be upregulated in human 

failing hearts and hypertrophic murine hearts [22]. 

ADAMTS2 overexpression both in vivo and in vitro 
reversed the prohypertrophic effect of Ang II through the 

PI3K-AKT signaling pathway [22]. In this study, we 

noted that ADAMTS2 was almost only expressed in CFs 

and validated that MYC transcriptionally upregulated 

ADAMTS2. On the basis of the bioinformatics analysis 

and experimental results, we believed that the TGF-β-

MYC-ADAMTS2 axis might be a potential therapeutic 

target for cardiac hypertrophy and HF. 

 

In recent years, DYNLL1 has been deemed as an 

inhibitor of neuronal nitric oxide synthase and may 

regulate numerous biologic processes [23–26]. Yuan, J 

et al. reported that once dissociated with COX4IL, 

DYNLL1 could increase the release of mitochondrial 

reactive oxygen species [27]. Furthermore, DYNLL1 is 

involved in TGF-β–related pathways. Merino-Gracia, J 

et al. proposed that DYNLL1 might function as a 

dimerization clamp for activin receptor type IIB 

(ActRIIB), a type II TGF-β superfamily receptor [28]. 

Luciferase reporter assay revealed that DYNLT1 

binding to ActRIIB resulted in the TGF-β signaling 

activity inhibition [28]. By applying scRNA 

sequencing, Gladka, M. M et al. reported that DYNLL1 

was one of the responsive factors of ZEB2, which may 

promote cardiac contractility and scar healing following 

myocardial infarction [29]. In another bioinformatics 

study, DYNLL1 was also upregulated in dilated 

cardiomyopathy [30]. 

 

The protein encoded by MRC2 takes part in extracellular 

matrix remodeling by collagen ligand degradation. Quite 

a few studies have attempted to clarify the regulatory role 

of MRC2 in various cancers [31, 32]. Higher MRC2 and 

TGF-β1 expressions were independent prognosis factors 

for intrahepatic metastases, and MRC2 knockdown 

repressed the TGF-β–induced cell migration and invasion 

[31]. Mrc2-deficient mice showed exacerbated renal 

fibrosis and renal parenchymal damage following 

unilateral ureteral obstruction [33]. Lanlan Li et al. 
reported that MRC2 knockdown inhibited mouse 

mesangial cell proliferation and induced cell apoptosis in 

the model of diabetic nephropathy [34]. 

Chen, S. J et al. noted that EGR1 could be induced by 

SMAD3, and TGF-β stimulation increased its protein 

and mRNA levels in human skin FBs [35]. EGR1 has 

been reported to regulate I/R injury through various 

signaling pathways [36–40]. Particularly, Fan, K et al. 

observed that the EGR1/miR-15a-5p/GPX4 axis 

increased ferroptosis in acute myocardial infarction, 

which aggravated myocardial cell hypoxia injury [41]. 

Huang, C et al. reported that EGR1 overexpression 

enhanced neutrophil recruitment and aggravated the 

ensuing I/R injury by activating the TLR4/TRIF 

signaling pathway [42]. Pan, J et al. noted that EGR1 

downregulation alleviated cardiac injury caused by 

acute myocardial infarction in a TLR4/NFκB signal-

dependent manner [43]. Furthermore, EGR1 regulates 

various cardiovascular diseases, including pulmonary 

hypertension [44], atherosclerosis [45–47], and cardiac 

hypertrophy [48–50]. 

 

OTUD1 is a deubiquitinating enzyme that is not well 

studied and mainly limited in immune and cancer fields 

[51–54]. Zhang, Z et al. reported that metastasis-

repressing factor OTUD1 deubiquitinated SMAD7 at 

Lysine 220 and prevented its degradation [55]. In the 

field of cardiovascular research, Xie, J et al. reported 

that OTUD1 might be the target of sevoflurane-induced 

cardio-protection [56]; Quttainah, M et al. reported the 

upregulation of OTUD1 in a hypertrophic myocardium 

[57], which was consistent with the results of this study. 

 

Taken together, the data presented herein strongly 

indicate that TRGs are involved in cardiac hypertrophy 

and HF. scRNA analysis was used to identify specific 

target cell types of hub genes under pathological 

conditions, which provide convenience for further 

research. Possible therapeutic strategies designed to 

regulate TGF-β pathways based on the six hub genes 

may provide clinical responses to reverse cardiac 

hypertrophy and alleviate HF. 

 

This study had some limitations. First, this study did not 

distinguish different etiologies (myocardial infarction, 

cardiomyopathy, hemodynamic overload, and 

inflammation) or classification (HFrEF, HFpEF, and 

HFmrEF) for HF. Further investigation must be 

performed if appropriate public datasets will be 

available in the future. Second, in vivo experimental 

validation and human primary cells should be used to 

strengthen the results. Lastly, it could have been better 

if the protein expression and molecular mechanisms for 

the other five hub genes were verified. 

 

CONCLUSIONS 
 

This study identified six hub genes (TANC2, 

ADAMTS2, DYNLL1, MRC2, EGR1, and OTUD1) by 
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integrating scRNA and transcriptome data. The 

regulatory effect of the TGF-β-MYC-ADAMTS2 axis 

on CF activation was also validated in vitro. These six 

hub genes might be therapeutic targets for cardiac 

hypertrophy and HF. To explore the related molecular 

mechanisms, further experimental validation must be 

performed. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Data processing and filtration of scRNA data. (A) Before the batch correction of 8 single cell RNA 

sequencing samples. (B) After the batch correction of 8 single cell RNA sequencing samples. (C) The nFeature, nCount, percent.mt and 
percent.HB of 8 single cell RNA sequencing samples before batch correction. (D) The nFeature, nCount, percent.mt and percent.HB of 8 single 
cell RNA sequencing samples after batch correction. (E) The PC selection based on Standard Deviation. 
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Supplementary Figure 2. ROC of 16 candidate hub genes in GSE141910. (A) ROC analysis of FLNC. (B) ROC analysis of CCL2. (C) ROC 
analysis of TANC2. (D) ROC analysis of ADAMTS2. (E) ROC analysis of MIDN. (F) ROC analysis of PRRC1. (G) ROC analysis of LDLR. (H) ROC 
analysis of SOCS3. (I) ROC analysis of DYNLL1. (J) ROC analysis of RND3. (K) ROC analysis of NOTCH2. (L) ROC analysis of MRC2. (M) ROC 
analysis of DLG1. (N) ROC analysis of DOCK7. (O) ROC analysis of EGR1. (P) ROC analysis of OTUD1. 
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Supplementary Figure 3. Boxplots of 16 candidate hub genes in GSE57338. (A) Boxplot of FLNC. (B) Boxplot of CCL2. (C) Boxplot of 

TANC2. (D) Boxplot of ADAMTS2. (E) Boxplot of MIDN. (F) Boxplot of PRRC1. (G) Boxplot of LDLR. (H) Boxplot of SOCS3. (I) Boxplot of DYNLL1. 
(J) Boxplot of RND3. (K) Boxplot of NOTCH2. (L) Boxplot of MRC2. (M) Boxplot of DLG1. (N) Boxplot of DOCK7. (O) Boxplot of EGR1.  
(P) Boxplot of OTUD1. 
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Supplementary Figure 4. Correlation diagram between DETFs and hub genes. (A) Correlation plot of AFF3 and MRC2.  

(B) Correlation plot of CREB5 and MRC2. (C) Correlation plot of CREB5 and OTUD1. (D) Correlation plot of CREB5 and TANC2. (E) Correlation 
plot of CSDC2 and MRC2. (F) Correlation plot of EGR1 and OTUD1. (G) Correlation plot of HIF3A and MRC2. (H) Correlation plot of HIF3A and 
TANC2. (I) Correlation plot of MEIS1 and MRC2. (J) Correlation plot of MYC and ADAMTS2. (K) Correlation plot of MYC and EGR1.  
(L) Correlation plot of NME2 and ADAMTS2. (M) Correlation plot of PRDM1 and EGR1. (N) Correlation plot of PRDM1 and TANC2.  
(O) Correlation plot of SOX6 and ADAMTS2. (P) Correlation plot of TEAD2 and TANC2. (Q) Correlation plot of ZNF483 and ADAMTS2.  
(R) Correlation plot of ZNF536 and ADAMTS2. (S) Correlation plot of ZNF780B and ADAMTS2. (T) Correlation plot of ZNF844 and ADAMTS2. 
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Supplementary Figure 5. Three possible binding sites between MYC and the promoter of ADAMTS2. 

 

 

 
 

Supplementary Figure 6. Uncut membranes for western blot. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 4–6, 9. 

 

Supplementary Table 1. TRGs used in this study. 

 

Supplementary Table 2. Cell markers 
used for cell annotation. 

Gene Cell_type 

CD79A B cells 

CD79B B cells 

IGHD B cells 

IGHM B cells 

MS4A1 B cells 

ACTC1 Cardiomyocytes 

COX6A2 Cardiomyocytes 

CRYAB Cardiomyocytes 

DES Cardiomyocytes 

MYBPC3 Cardiomyocytes 

MYH7 Cardiomyocytes 

MYH7B Cardiomyocytes 

MYL3 Cardiomyocytes 

PLN Cardiomyocytes 

TNNI3 Cardiomyocytes 

TNNT2 Cardiomyocytes 

TPM1 Cardiomyocytes 

AQP1 Endocardial cells 

CLU Endocardial cells 

CYP1B1 Endocardial cells 

EMCN Endocardial cells 

NPR3 Endocardial cells 

RAMP2 Endocardial cells 

VWF Endocardial cells 

AQP1 Endothelial cells 

CLDN5 Endothelial cells 

FABP4 Endothelial cells 

FABP5 Endothelial cells 

PECAM1 Endothelial cells 

RAMP2 Endothelial cells 

RGCC Endothelial cells 

VWF Endothelial cells 

C1R Fibroblasts 

COL1A1 Fibroblasts 

COL6A3 Fibroblasts 

DCN Fibroblasts 

EFEMP1 Fibroblasts 

FBLN1 Fibroblasts 

FBN1 Fibroblasts 

IGF1 Fibroblasts 

LUM Fibroblasts 

MGST1 Fibroblasts 

SCN7A Fibroblasts 

SERPINF1 Fibroblasts 
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AIF1 Myeloid cells 

C1QB Myeloid cells 

C1QC Myeloid cells 

CXCL8 Myeloid cells 

HLA-DRB1 Myeloid cells 

IL1B Myeloid cells 

ITGAX Myeloid cells 

LYZ Myeloid cells 

S100A9 Myeloid cells 

SCN7A Neuron 

CD247 NK 

CLIC3 NK 

FCGR3A NK 

GNLY NK 

KLRB1 NK 

KLRF1 NK 

PRF1 NK 

PTPRC NK 

SPON2 NK 

TRDC NK 

ABCC9 Pericytes 

CALD1 Pericytes 

CD36 Pericytes 

CPE Pericytes 

IGFBP7 Pericytes 

KCNJ8 Pericytes 

LHFP Pericytes 

NOTCH3 Pericytes 

PDGFRB Pericytes 

RGS5 Pericytes 

STEAP4 Pericytes 

ACTA2 Smooth muscle cells 

CALD1 Smooth muscle cells 

IGFBP5 Smooth muscle cells 

IGFBP7 Smooth muscle cells 

LHFP Smooth muscle cells 

MYH11 Smooth muscle cells 

PDGFRB Smooth muscle cells 

TAGLN Smooth muscle cells 

TAGLN Smooth muscle cells 

TPM1 Smooth muscle cells 

TPM2 Smooth muscle cells 

CD3D T cells 

CD3E T cells 

CD3G T cells 

IL7R T cells 

PTPRC T cells 

TRAC T cells 

TRBC2 T cells 
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Supplementary Table 3. Top five DEGs for cell clusters. 

Gene p_val avg_log2FC pct.1 pct.2 p_val_adj Cluster 

DCN 0 4.86033225383683 0.943 0.14 0 0 

ACSM3 0 4.84943856649452 0.653 0.036 0 0 

NEGR1 0 4.3807661059158 0.774 0.035 0 0 

LUM 0 4.17344564299228 0.494 0.042 0 0 

CDH19 0 3.92780518891926 0.737 0.018 0 0 

RYR2 0 6.41775782329685 0.991 0.11 0 1 

TTN 0 5.68238251857937 0.998 0.195 0 1 

FGF12 0 4.96914952486419 0.93 0.054 0 1 

CTNNA3 0 4.95286939204842 0.96 0.055 0 1 

DMD 0 4.85986399702598 0.947 0.182 0 1 

GZMK 0 3.12519579885936 0.424 0.019 0 2 

IL7R 0 3.01077025286076 0.5 0.02 0 2 

CD69 0 2.94537206115857 0.726 0.106 0 2 

CXCR4 0 2.9188029665928 0.886 0.227 0 2 

TRAC 0 2.59700805711885 0.653 0.058 0 2 

HLA-DRA 0 4.24285489822362 0.849 0.253 0 3 

CXCL8 0 4.18398707519192 0.562 0.053 0 3 

C1QA 0 4.06026658748762 0.71 0.028 0 3 

CD74 0 3.78416950025651 0.887 0.354 0 3 

C1QC 0 3.77207331588078 0.638 0.012 0 3 

GNLY 0 4.2851508393933 0.882 0.075 0 4 

NKG7 0 3.87804636348164 0.984 0.138 0 4 

GZMB 0 3.83851658763401 0.925 0.071 0 4 

PRF1 0 3.71707226409034 0.89 0.065 0 4 

FGFBP2 0 3.20214523026835 0.737 0.039 0 4 

RGS5 0 5.28421822246012 0.911 0.058 0 5 

ACTA2 0 4.51987305658022 0.81 0.067 0 5 

TAGLN 0 4.1472989179207 0.689 0.123 0 5 

NDUFA4L2 0 4.09931917981521 0.779 0.056 0 5 

AGT 0 3.6876745069365 0.74 0.041 0 5 

SLC9A3R2 0 4.04008473381861 0.851 0.079 0 6 

IFI27 0 3.79608410198314 0.825 0.121 0 6 

ID1 0 3.62468014382417 0.789 0.072 0 6 

FABP4 0 3.4888404087723 0.79 0.123 0 6 

VWF 0 3.34798840815497 0.773 0.08 0 6 

S100A9 0 5.00310628777903 0.694 0.027 0 7 

S100A8 0 4.94881242685836 0.571 0.013 0 7 

LYZ 0 4.26141716783104 0.838 0.099 0 7 

FCN1 0 3.70339245195514 0.765 0.014 0 7 

LST1 0 3.50614744551876 0.881 0.085 0 7 

ACKR1 0 3.97257247101983 0.741 0.007 0 8 

STC1 0 3.4008436313059 0.46 0.023 0 8 

CCL14 0 3.33867439895825 0.622 0.005 0 8 

CLU 0 3.09401426633057 0.764 0.09 0 8 

PLAT 0 2.82678356305652 0.702 0.027 0 8 

TNNC1 1.43699903629166E-223 4.76107759314724 0.975 0.287 4.8743007311013E-219 9 

MB 4.21235193032254E-220 4.51647790429309 0.967 0.282 1.4288297747654E-215 9 

ACTA1 1.82481166635604E-210 4.85585977396702 0.979 0.314 6.18976117227969E-206 9 

TNNI3 1.4818891019274E-208 4.70464102242041 1 0.347 5.02656783373773E-204 9 

MYL2 3.9506659465879E-173 5.58323668400163 0.987 0.459 1.34006588908262E-168 9 

CCL21 0 5.13205328081029 0.449 0.009 0 10 

PKHD1L1 0 3.87291638172088 0.532 0.003 0 10 

TFF3 0 3.28289030271198 0.427 0.016 0 10 

EDN1 0 3.07489369875103 0.363 0.021 0 10 
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CLU 1.82380791808203E-267 3.32236229036408 0.701 0.108 6.18635645813424E-263 10 

GPC6 5.22267657793858E-94 2.90893797803817 0.497 0.079 1.77153189523677E-89 11 

POSTN 1.46559009070073E-43 3.06775284892027 0.27 0.046 4.97128158765689E-39 11 

COL1A1 1.05211410073902E-41 3.67854698849994 0.417 0.11 3.56877102970677E-37 11 

PDE3B 2.5572673369461E-17 3.44251152886124 0.362 0.167 8.67425080692116E-13 11 

ACACB 6.3507832673874E-09 3.92448378530564 0.331 0.209 0.000215418568429781 11 

IGKC 1.55078454812611E-217 7.58008961455903 0.734 0.141 5.26026118724375E-213 12 

IGHG1 6.90440955885165E-207 6.42000621953637 0.404 0.041 2.34197572236248E-202 12 

IGLC2 1.64680518815126E-172 7.27737071491919 0.511 0.077 5.58596319820907E-168 12 

IGLC3 9.96566261184208E-162 6.70036041790492 0.369 0.042 3.38035275793683E-157 12 

IGHA1 5.19386773046055E-86 5.83511690446958 0.376 0.073 1.76175993417222E-81 12 

TPSAB1 0 6.85256327327856 0.635 0.005 0 13 

TPSB2 0 6.36443747718339 0.806 0.01 0 13 

SLC24A3 0 4.78566818689652 0.553 0.018 0 13 

IL18R1 1.32075565447894E-289 4.58241578915418 0.594 0.042 4.48000317999258E-285 13 

NTM 1.12275115714754E-252 4.77701416949464 0.494 0.033 3.80837192504445E-248 13 

FGF12 1.45499579881097E-69 2.86759966933442 0.924 0.209 4.93534574956681E-65 14 

FHL2 2.68435369638122E-65 3.37113657159157 0.924 0.25 9.10532773812509E-61 14 

PPP1R12B 3.45017111772225E-56 2.86400244775912 0.911 0.279 1.17029804313139E-51 14 

TMEM178B 1.09356460693364E-44 2.71873310457517 0.608 0.129 3.70937114671889E-40 14 

ATP2A2 1.34309389359206E-43 2.71588179524891 0.797 0.261 4.55577448706428E-39 14 

NRXN1 0 6.30799621129182 0.916 0.016 0 15 

XKR4 0 5.25312021491104 0.773 0.013 0 15 

KIRREL3 0 4.15004602677765 0.597 0.015 0 15 

CADM2 1.83155279084511E-288 4.52409425928216 0.723 0.045 6.21262706654662E-284 15 

NRXN3 1.72174344674826E-166 4.55304740506912 0.739 0.084 5.84015377137011E-162 15 

 

Supplementary Table 4. DEGs for GSE57338. 

 

Supplementary Table 5. Genes in the three gene modules by WGCNA. 

 

Supplementary Table 6. Intersection results from DEGs in scRNA and gene modules from WGCNA. 
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Supplementary Table 7. Results of three machine learning 
algorithms. 

Lasso SVM-RFE RandomForest Intersection 

ITGB5 FLNC FLNC FLNC 

ENC1 NDRG4 NDRG4 CCL2 

EGR1 CCL2 TGFB2 TANC2 

ADAMTS2 TGFB2 CCL2 ADAMTS2 

COL1A2 TANC2 TANC2 MIDN 

SRPX2 ADAMTS2 MIDN PRRC1 

CCL2 ACACB ADAMTS2 LDLR 

CCL4 MIDN ACACB SOCS3 

MRC2 PRRC1 LDLR DYNLL1 

SOCS3 LDLR DYNLL1 RND3 

CLDN5 SOCS3 PRRC1 NOTCH2 

ADAMTS1 DYNLL1 NOTCH2 MRC2 

PDLIM7 RND3 DLG1 DLG1 

DYNLL1 NOTCH2 DOCK7 DOCK7 

RND3 MRC2 SOCS3 EGR1 

CCL3 DLG1 RND3 OTUD1 

TULP4 DOCK7 MRC2  

NOTCH2 EGR1 MAMDC2  

PFKL MAMDC2 EGR1  

FLNC PLCG2 OTUD1  

LDLR COPA   

GMDS OTUD1   

AMOTL1 ZFP36   

PTPRE TSC22D2   

PRRC1 CDC37L1   

MAP2    

SPON1    

COPA    

TANC2    

DEPTOR    

CSRP3    

OTUD1    

DOCK7    

PLCG2    

ROR1    

OTULIN    

MIDN    

IRF1    

PRELID2    

TNFRSF12A    

DLG1    

SRPK2    

MAP3K3    

TSC22D2    
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Supplementary Table 8. Primers used for RT-qPCR. 

Tanc2-Mouse 
Forward primer: ACAAGCAGGGTCGTACTCC 

Reverse primer: ACAAGCAGGGTCGTACTCC 

Adamts2-Mouse 
Forward primer: ACGCCTTTTCTACAACCTCAC 

Reverse primer: GCCAGCCCATCACAGTTACT 

Dynll1-Mouse 
Forward primer: ATTGCGGCCCATATCAAGAAG 

Reverse primer: GTGCCACATAACTACCGAAGTTT 

Mrc2-Mouse 
Forward primer: TCTCCCGGAACCGACTCTTC 

Reverse primer: GGTCGAGCACATAGGTCTTCT 

EGR1-Mouse 
Forward primer: TCGGCTCCTTTCCTCACTCA 

Reverse primer: CTCATAGGGTTGTTCGCTCGG 

Otud1-Mouse 
Forward primer: AGAGGCAGGACAAGTACCTGA 

Reverse primer: CCCGTACACAGTCTTGCTGAC 

Gapdh-Mouse 
Forward primer: AGGTCGGTGTGAACGGATTTG 

Reverse primer: TGTAGACCATGTAGTTGAGGTCA 

Adamts2-Rat 
Forward primer: TTGACGACAACAATGTCCTGGAA 

Reverse primer: GGCGGCAGCCATACTTAGTGA 

 

Supplementary Table 9. Human transcription factor list. 
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Supplementary Table 10. DETFs from GSE57338. 

MEOX2 

CSRNP3 

CEBPD 

BACH2 

ZNF780B 

PRDM1 

CEBPB 

ZNF610 

RXRG 

STAT3 

BCL6 

CSDC2 

HOPX 

HIF3A 

EGR1 

TEAD2 

FOSL2 

STAT4 

ZNF676 

IRX6 

MYBL1 

MEIS1 

PRDM5 

MYC 

ZNF536 

ZNF844 

FOXP2 

KLF15 

ARNTL 

ZNF483 

CREB5 

AFF3 

SOX6 

TEAD4 

GTF2IRD1 

NME2 
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Supplementary Table 11. Correlation between DETFs and hub genes. 

TF Gene Cor Pvalue Regulation 

AFF3 MRC2 0.442788806576612 1.84337004855542E-16 positive 

CREB5 MRC2 0.480273793822713 1.82117672807951E-19 positive 

CREB5 OTUD1 0.424601307932975 3.94100506772248E-15 positive 

CREB5 TANC2 0.481197897939709 1.51880204113577E-19 positive 

CSDC2 MRC2 -0.412047710164256 2.93761537234927E-14 negative 

CSDC2 TANC2 -0.486776754754533 5.01614442809115E-20 negative 

EGR1 OTUD1 0.442261092529332 2.01993211272779E-16 positive 

HIF3A MRC2 -0.418972581936567 9.80094370176029E-15 negative 

HIF3A TANC2 -0.408220138963945 5.33104346125116E-14 negative 

MEIS1 MRC2 -0.404653939452163 9.22559922506808E-14 negative 

MYC ADAMTS2 0.465141370499743 3.29738532962804E-18 positive 

MYC EGR1 0.43630434024952 5.61025684118326E-16 positive 

NME2 ADAMTS2 0.518968863540368 5.5611329003376E-23 positive 

PRDM1 EGR1 0.410437253435248 3.77829471021524E-14 positive 

PRDM1 TANC2 0.441181915584052 2.43421243531372E-16 positive 

SOX6 ADAMTS2 -0.426011755224098 3.12823900404172E-15 negative 

TEAD2 TANC2 -0.416329429166315 1.49460768407431E-14 negative 

ZNF483 ADAMTS2 -0.429603452122813 1.72879640458759E-15 negative 

ZNF536 ADAMTS2 -0.406651564364507 6.79087417949834E-14 negative 

ZNF780B ADAMTS2 -0.563580888780271 1.23615362726687E-27 negative 

ZNF844 ADAMTS2 -0.483993837640592 8.73923511224908E-20 negative 

 


