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INTRODUCTION 
 

Lung adenocarcinoma (LUAD) is a common pulmonary 
malignancy with a poor prognosis. With the higher 

proportion than squamous cell carcinoma and large-cell 

carcinoma, lung adenocarcinoma (LUAD) accounts for 

approximately 60% of non-small cell lung cancer which 

is the majority of lung cancer [1]. Lung cancer remains 

the leading cause of cancer-related deaths worldwide, 

with a significant impact on public health. It is estimated 

that there are approximately 2.09 million new cases  

of lung cancer and 1.76 million deaths attributed to  

the disease each year. Due to the lack of effective and 

sensitive diagnostic methods in the early stages, LUAD 
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ABSTRACT 
 

Background: Metastasis of lung adenocarcinoma (LUAD) severely worsens prognosis. Genetic alteration in 
the tumor microenvironment (TME) is closely associated with metastasis and other malignant biological 
properties of LUAD. In this study, we establish a metastasis-related risk model to accurately predict LUAD 
prognosis. 
Methods: RNA-sequencing profiles and clinical data of LUAD patients including 503 tumor tissues and 54 
adjacent normal tissues were collected in TCGA database. Additionally, the paired specimens from 156 LUAD 
patients were obtained in a single center. The metastatic relevance and clinical significance of metastasis-
related long non-coding RNA (MRLNRs) was validated by series of in vitro experiments including western 
blotting, qPCR and transwell assays. 
Results: Six MRLNRs were significantly correlated to prognoses of LUAD patients, of which AL359220.1, 
SH3BP5-AS1 and ZF-AS1 were further used to establish a metastasis-related risk scoring model (MRRS) due 
to the close associations with overall survival of LUAD patients. According to the MRRS, patients with higher 
scores in the high-risk group obtained poorer prognoses and survival outcomes. ZFAS1 expressed highly in 
tumor tissues and showed the inverse results compared to SH3BP5-AS1 and AL359220.1. In addition, the 
high expression of ZFAS1 was prominently correlated to the more advanced T-stage and distant metastasis. 
The reduction of ZFAS1 induced by siRNAs dramatically diminished the migration and invasion abilities of 
LUAD cells. 
Conclusions: In the present research, we elucidate the metastatic relevance and clinical significance of 
AL359220.1, SH3BP5-AS1 and ZF-AS1 in LUAD. Moreover, MRRS provide a promising assessing model for clinical 
decision making and prognosis of LUAD. 
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is often examined when original tumor cells metastasize 

to the brain, bones, and respiratory system, provoking 

the consistently high mortality [2–5]. Although a chain 

of new therapeutic strategies including chemotherapy, 

targeted therapy and immunotherapy have been approved 

in clinic, the long-term outcomes for metastatic LUAD 

proved unsatisfactory [6, 7]. Importantly, specific 

mechanisms underlying metastasis of LUAD and  

its association with the tumor microenvironment (TME) 

remain incompletely understood. Therefore, the patho-

genesis and metastatic mechanism of LUAD must be 

determined for early evaluation and treatment. 

 

It has been well appreciated that TME, providing  

the crucial intercellular platform, closely affects 

tumorigenesis, progression and long-term prognosis by 

modulating the functional and genetic alteration in cell 

subpopulations [8–10]. In the last decades, overwhelming 

evidence suggests that differentially expressed gene 

(DEG) in the TME are not only promising biomarkers 

for prognostic evaluation including metastasis assess-

ment, but also act as effective targets for cancer 

treatment [11–13]. A series of metastasis-related long 

non-coding RNA (MRLNRs) have been identified  

to regulate the metastatic processes of various tumors. 

The high expression of lncR-MCF2L-AS1A in breast 

tumor cells promotes metastasis by increasing YAP 

transcription [14]. In addition, Dong et al. found a 

positively modulating relationship between lncR-

TRIM28-14 and COL4A1 in the peritoneal metastatic 

tissues of gastric cancer, indicating the potential role of 

lncR-TRIM28-14 in metastatic evaluation and strategy 

[15]. Nevertheless, the pivotal role of lncRNAs in the 

metastatic process of LUAD remain incompletely 

understood. 

 

In this study, we will identify more promising MRLNRs 

to construct an accurate risk model for prognostic 

evaluation and targeted treatment and how MRLNRs 

regulate the metastasis of LUAD. These findings will 

provide a novel perspective for further research in the 

realm of lncRNA-modulated LUAD metastasis. 

 

RESULTS 
 

Acquisition of MRLNRs 

 

Transcriptome RNA-sequencing data and clinical data 

were downloaded from TCGA database. As a standard 

of P< 0.05 and |log2 fold change| > 1, we screened  

3278 DElncRs, of which 2426 were upregulated and 

852 were downregulated, and the top 50 upregulated 

and downregulated DElncRs were illustrated in Figure 

1A. Following that, lncRNAs and mRNAs data were 

extracted from transcriptome data. We screened 44 

MRGs in TOMIDA_METASTASIS_UP M17830 and 

TOMIDA_METASTASIS_DN M2583 of Molecular 

Signatures Database, of which 339 lncRNAs were 

identified to be the MRLNRs through correlation analysis. 

 
The correlation between prognosis of LUAD patients 

and MRLNRs  

 
Based on COX regression analysis, we then verified 6 

MRLNRs which were associated with prognosis of 

LUAD patients, including AL359220.1, AL021368.2, 

SH3BP5-AS1, AL590666.2, AL109811.2 and ZF-AS1 

(p<0.01). The relationships between these sMRLNRs 

and LUAD prognoses were clearly illustrated in the 

forest plot (Figure 2). 

 

Prognostic features of the high-risk group and the 

low-risk group 

 
The three sMRLNRs (AL359220.1, SH3BP5-AS1  

and ZF-AS1) among the 6 sMRLNRs were selected  

by multivariate COX analysis (P<0.05)., and were used 

to establish the MRRS, by which the LUAD patients 

were divided into the high-risk group and the low-risk 

group (Figure 3A). As illustrated in the Figure 3B,  

the mortality rate constantly increased with the higher 

risk score. With the increase of the risk score, the 

expression levels of ZF-AS1 were increased, while 

SH3BP5-AS1 and AL359220.1 were decreased (Figure 

3C). Furthermore, the survival curve of the high-risk 

group was significantly lower than that of the low-risk 

group (Figure 4). 

 
The relationships between MRRS and clinical 

features and the regulation network of sMRLNRs 

 

To further explore the relevance of the sMRLNRs  

and clinical features of LUAD, we analyzed the 

correlation of MRRS and the clinical and demographic 

characteristics including stage, T-stage and N-stage  

and M-stage (Figure 5A–5H). We found that the MRRS 

was significantly correlated with N-stage and M-stage 

(Figure 5C, 5D). We found the expression levels of 

SH3BP5-AS1 and AL359220.1 were lower in LUAD 

patients with the more advanced stage and T-stage 

(Figure 5E, 5F). Furthermore, the expression of SH3BP5-

AS1 was correlated with early N-stage. Besides,  

the expression of ZF-AS1 was higher with the more 

advanced stage, T-stage, N-stage and M-stage (Figure 

5E–5H). We further displayed the independent prognostic 

factor analysis, the results showed stage, T-stage, N-

stage, M-stage and risk score were prominently 

correlated with OS in univariate analysis (P<0.05). 

However, only risk score illustrated as an independent 
risk factor in the multivariate analysis (Table 1).  

The ROC curves could represent the accuracy of the 

MRRS.
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The AUCs of risk score was 0.661, sensitivity:0.215 and 

specificity:0.912 (Figure 6). These results suggested that 

the MRRS can be regarded as an accuracy predict model 

for LUAD. Next, the MRRS was integrated into a 

nomogram for predicting 1-, 3-, and 5-year survival rates 

of LUAD patients (Figure 7). Based on the nomogram 

scores, the 1-, 3-, and 5-year survival rates of LUAD 

patients could be well predicted by their nomogram 

scores. To further find the regulatory relationships of 

sMRLNRs and their target microRNAs, we selected the 

microRNAs of Starbase database and the results were 

demonstrated in regulatory network (Figure 8). 

 

LncR-ZFAS1 showed significant relevance to 

metastasis  

 

Then, we examined the levels of these sMRLNRs which 

were used to establish the MRRS in various LUAD

 

 
 

Figure 1. Differentially expressed LUAD lncRNAs. The heatmap showed the top 50 upregulated and downregulated DElncRs between 

LUAD tumor tissues and normal tissues. The blue parts represent downregulated lncRNAs and the red parts represent the upregulated 
lncRNAs. 
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Figure 2. Survival-related MRLNRs. Forest plot illustrated the prognosis values of sMRLNRs (AL359220.1, AL021368.2, ZF-AS1, SH3BP5-
AS1, AL109811.2 and AL365181.3). 

 

 
 

Figure 3. Metastasis-related risk score model (MRRS) was established based on sMRLNRs. The risk score distribution in low-risk 

group and high-risk group of LUAD patients (A). Survival status between LUAD patients’ high-risk group and low-risk group (B). The heatmap 
of expression levels of contained sMRLNRs (C). 
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tissues and cell lines, and found that ZFAS1 expressed 

highly in tumor tissues and showed the inverse results 

compared to SH3BP5-AS1 and AL359220.1 (Figure 

9A–9C). Consistently, the expression of ZFAS1 in 

LUAD cell lines (A549, NCI-H1299 and HCC827)  

was dramatically higher than that in normal bronchial 

epithelial cell line, while SH3BP5-AS1 and AL359220.1 

expressed increasingly in HBE cell line (Figure 9D–

9F).  

 

In addition, we further investigated the clinical 

relevance of ZFAS1. All the LUAD patients were

 

 
 

Figure 4. The survival curve of MRRS. Kaplan-Meier survival curve of survival probability in low-risk and high-risk groups of LUAD 

patients. 
 

 
 

Figure 5. The relationship between the risk score and clinical features. Relationships between MRRS and stage (A), T- stage (B), M 

stage (C) and N- stage (D). Relationships between sMRLNRs and stage (E), T-stage (F), M-stage (G) and N-stage (H). 
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Table 1. Univariate and multivariate COX analysis of LUAD patients. 

Note: HR, Hazard Ratio. 

 

divided into the ZFAS1-high-expression group and 

ZFAS1-low-expression group, followed by the analyses 

of their associations with various clinicopathologic 

features. As illustrated in Table 2, ZFAS1 showed 

prominent correlation to T-stage and metastatic status, 

which was consistent with the finding in Figure 5C, 5D. 

 

LncR-ZFAS1 strikingly promoted migration and 

invasion abilities of LUAD cell lines 

 

To further validate the potency of ZFAS1 in regulating 

the metastatic process of LUAD, ZFAS1 was silenced  

 

 
 

Figure 6. Receiver operating characteristic (ROC) curve. 
ROC curves demonstrated the prognostic accuracy of MRRS. The 
AUC of risk score was 0.661. 

using siRNA in A549 cell line with the highest 

expression (Figure 10A). Interestingly, we found that 

siRNA-ZFAS1 considerably decreased the invasion and 

migration abilities of A549 cell line, suggesting the pro-

metastatic effect of ZFAS1 (Figure 10B). Consistently, 

siRNA-ZFAS1 provoked the remarkable reductions  

of VIMENTIN and NCADHERIN in the epithelial-

mesenchymal transition pathway, but showing the 

opposite role to the E-CADHERIN (Figure 10C). These 

findings indicate that lncR-ZFAS1 plays a pivotal role 

in promoting LUAD metastasis.  

 
DISCUSSION 

 
Efforts have long been made for the deeper 

understanding of LUAD metastasis which severely 

threatened survival [8, 16]. An increasing number  

of studies focused on the genetic profiling of tumor 

cells, which was prominently modulated by dynamic 

and complex alterations in the TME, and intended to 

dissect the metastatic mechanisms of LUAD [17–20]. 

Long non-coding RNAs have been well documented 

that play nonnegligible roles in regulating a diverse 

array of malignant processes of LUAD, including 

distant metastasis [21, 22]. For example, Chen et al. 

demonstrated that lncR-BC facilitated LUAD progression 

and metastasis through regulating the transcript variant 

and alternative splicing of a non-protein-coding inositol 

monophosphatase domain containing 1, besides, lncR-

BC could interact with splicing factors, such as hnRNPK 

[23]. Another study of Hu revealed the pro-metastatic 

effect of lncRNAs in the TME of LUAD and they found 

that lncR00963 loaded in LUAD cell-derived extra-

cellular vesicles fostered tumor growth and metastasis 

by facilitating Siah1 degradation but suppressing Zeb1 

degradation [24].  

 
In this study, we identified and validated that ZFAS1, 

SH3BP5-AS1 and AL359220.1 were metastasis-related 

 Univariate analysis Multivariate analysis 

Variables HR HR 95% low HR 95% 

high 

P value HR HR 95% low HR 95% high P value 

Age 1.009472 0.993732 1.025461 0.239667 1.009939 0.993923 1.026213 0.225263 

Gender 1.148882 0.848326 1.555922 0.369753 0.902694 0.653771 1.246394 0.534001 

Stage 1.600743 1.385203 1.849821 1.81e-10 1.444730 0.991066 2.106060 0.055709 

T-stage 1.543313 1.285402 1.852972 3.30e-06 1.150620 0.933031 1.418958 0.189570 

M-stage 1.966135 1.114580 3.468287 0.019566 0.652789 0.247017 1.725119 0.389686 

N-stage 1.632947 1.371507 1.944224 3.61e-08 1.135570 0.816321 1.579672 0.450306 

Risk score 2.552644 1.806082 3.607805 1.10e-07 2.052003 1.417997 2.969481 0.000137 
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Figure 7. Nomogram of MRRS. Nomogram was drawn to predict LUAD patients’ 1-, 3-, and 5-year survival probability by evaluating the 

expression of sMRLNRs. 
 

 
 

Figure 8. The relationships of the sMRLNRs and target miRNAs. The sMRLNRs and target miRNAs regulatory network. Red parts 
represent sMRLNRs; blue parts represent miRNAs. 
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and considerably regulated LUAD progression. In 

addition, we provided an accurate and promising 

MRRS based on the three metastatic lncRNAs for 

prognostic evaluation of LUAD. Lin et al. found  

that the elevation of SH3BP5-AS1 induced by N6-

methyladenosine prominently facilitated pancreatic 

cancer cell migration by sponging miR-139-5p and 

targeting CTBP1, accordingly activating the WNT 

signaling pathway [25]. Besides, ZFAS1 has ever been 

demonstrated that closely affected the survival of 

patients with gastric cancer and could be served as  

a strong candidate for prognostic evaluation [26].  

A study of Fan implied that increasing expression  

of ZFAS1 fostered LUAD progression by attracting 

more miR-1271-5p and upregulating FRS2 [27]. 

Nevertheless, few studies have revealed the potential 

role of AL359220.1 as yet.  

 

Although these results demonstrated the potential of 

MRRS in assessing the metastatic possibility and 

prognostic status of LUAD patients and verified the 

significant relevance between ZFAS1 and clinico-

pathologic characteristics, some limitations remain to  

be further optimized. Exosomes containing a diverse 

array of cellular components and productions have  

been gradually documented that facilitate intercellular 

communication and modulate the genetic and functional 

alterations in cell populations in the TME [1, 28,  

29]. However, how LUAD cell-derived exosomes 

regulate metastatic process and whether ZFAS1 is 

wrapped in exosomes and participates in the functional 

modulation in the TME of LUAD remain to be  

further investigated. Additionally, detailed molecular 

mechanisms by which ZFAS1 promotes LUAD 

metastasis are incompletely understood, so a series of in 

 

 
 

Figure 9. The expression levels of AL359220.1, ZFAS1 and SH3BP5-AS1 in cell lines and LUAD tissues. The qPCR results of the 

expression levels of ZFAS1, AL359220.1 and SH3BP5-AS1 in LUAD tissues and adjacent tissues (A–C) and LUAD cell lines (A549, HCC827 and 
NCI-H1299) and human bronchial epithelial cell (HBE). (D–F) ZFAS1 highly expressed in LUAD tissues and LUAD cell lines than adjacent tissues 
and HBE cell. The expression of AL359220.1 and SH3BP5-AS1 in adjacent tissues and HBE cell were higher than that in LUAD tissues and LUAD 
cell lines. 
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Table 2. The associations between ZFAS1 and clinicopathologic features 
of LUAD patients. 

Parameter N 
The ZFAS1 level 

P value 
Low High 

Gender    

0.623   Male 97 42 55 

  Female 59 28 31 

Age (year)    

0.746   <65 89 43 46 

  ≥65 67 35 32 

T stage    

0.002 

  1 41 31 10 

  2 85 34 51 

  3 26 12 14 

  4 4 1 3 

Metastatic status    

0.017   Positive 13 2 11 

  Negative 143 76 67 

 

 
 

Figure 10. ZFAS1 enhanced the abilities of invasion and migration of A549. The knockdown efficiency of siR-ZFAS1 (A). Compared to 

the NC group, A549 cells transfected with siR-ZFAS1 showed higher expression of E-Cadherin and lower expression of N-Cadherin and 
Vimentin (B). SiR-ZFAS1 significantly reduced the ability of invasion and migration in A549 cell line (C). 
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vivo and in vitro experimental models are needed  

to further decipher them from more novel and 

comprehensive perspectives. In the future, we will 

collect more clinical data from additional patients to 

perform machine learning and validate the effectiveness 

of our model. 

 
CONCLUSIONS 

 
In this study, we identify and validate the metastatic 

relevance of sMRLNRs including AL359220.1, SH3BP5-

AS1 and ZF-AS1, in various cell lines and tissues and 

elucidate their potential for prognostic assessment of 

LUAD by developing a MRRS. More importantly,  

we ascertain the close association of ZFAS1 with patho-

logical stage and distant metastatic status of LUAD 

patients admitted to a single center. The above findings 

propose a novel link between sMRLNRs and LUAD 

metastasis, and help to open up a new perspective for 

metastasis-related studies. 

 
MATERIALS AND METHODS 

 
Sample collection and cell culture 

 
One hundred and fifty-six LUAD tissues and adjacent 

normal tissues were collected from patients admitted  

to the First Affiliated Hospital of Chongqing Medical 

University between May 2018 and September 2022. All 

specimens were frozen in liquid nitrogen immediately 

and transferred to –80° C refrigerator for further analyses.  

 
LUAC cell lines (A549, NCI-H1299 and HCC827)  

and human bronchial epithelial cell line (HBE) were 

purchased from the American Type Culture Collection 

(Manassas, VA, USA). DMEM and 1640 basic medium, 

supplementing with 10% fetal bovine serum, 100 μ/mL 

penicillin and streptomycin (Gibco, Gaithersburg, MD, 

USA) was utilized for cell culture. Cells were incubated 

at 37° C with an atmosphere of 5% CO2.  

 
Real-time quantitative PCR 

 
According to the manufacturer's instructions, total RNA 

from tissues and cell lines under various experimental 

conditions was extracted by Triazole (Invitrogen, 

Waltham, MA, USA). cDNA Synthesis Kit (TaKaRa, 

Osaka, Japan) combining with RNA (1μg) was utilized  

to reverse transcribed cDNA. The quantitative polymerase 

chain reaction (qPCR) was performed on an ABI 7500 

real-time PCR system (Applied Biosystems, Waltham, 

MA, USA) using SYBR-Green method (TaKaRa). 

Relative expression levels of lncRNAs normalized to 

GAPDH was calculated by the 2−ΔCt method. The 

primer sequences are shown in Table 3. Three assays 

were performed per cDNA sample. 

 
Transcriptome data download and preprocessing  

 
RNA-sequencing data and clinical data of LUAD 

patients were downloaded from the TCGA data portal 

(https://portal.gdc.cancer.gov/), containing 402 LUAD 

and 54 non-tumor samples (Supplementary Table 1). 

Our data were obtained from the TCGA database. We 

conducted preprocessing of the clinical data, excluding 

patients with a survival period of less than 30 days 

from the analysis. This exclusion was done because 

this subgroup of patients may have experienced early 

mortality due to factors such as bleeding and infection. 

These data were currently updated in Dec.12, 2022. 

Raw data were collected to do further analyses. RNA-seq 

results and clinical results were combined into a matrix 

file by a merge script of the Perl (http://www.perl.org/). 

 
MRLNRs extraction 

 
The limma package of R software was used to screen 

differentially expressed lncRNAs (DElncRs) from 

TCGA dataset by comparing the LUAD and non- 

tumor samples. The screen criterion is as follows:  

P< 0.05 and |log2 fold change| > 1. MRGs were 

screened by The Molecular Signatures Database v4.0 

(TOMIDA_METASTASIS_UP M17830, TOMIDA_ 

METASTASIS_DN M2583, http://www.broadinstitute. 

org/gsea/msigdb/index.jsp). MRGs were used to establish 

the immune score of LUAD gene by GSEA. The cor-

relations between immune score and the expression 

levels of lncRNAs in LUAD patients were calculated by 

Pearson correlation analysis. A standard of |r|>0.6 and 

P<0.01 was used to verify the MRLNRs. 

 
Acquire the survival-related MRLNRs (sMRLNRs)  

 
MRLNRs with correlation of OS were regarded as 

sMRLNRs in LUAD patients. The sMRLNRs were 

screened by univariate COX analysis using R software 

survival packages (P<0.01). Besides, the sMRLNRs 

were divided into protective and deleterious portion by 

Hazard ratio. These sMRLNRs were used for subsequent 

research. 

 
Metastasis-related risk score model (MRRS) creation  

 
The sMRLNRs have been analyzed by multivariate COX 

analysis, and the integrated sMRLNRs were utilized as 

an independent prognostic factor to develop the MRRS 

(P<0.05). We performed the MRRS to classify LUAD 

patients into the high-risk group and the low-risk group. 

https://portal.gdc.cancer.gov/
http://www.perl.org/
http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp
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Table 3. The sequences of ZFAS1, MCF2L-AS1, AL359220.1, GAPDH and siR-ZFAS1. 

ZFAS1 
F primer (5’-3’) GCTATTGTCCTGCCCGTTAG 

R primer (5’-3’) TCGTCAGGAGATCGAAGGTT 

MCF2L-AS1 
F primer (5’-3’) GATCAACGTTCAATCCACCG 

R primer (5’-3’) CGTCAAGATAGCGCAGCTTCC 

AL359220.1 
F primer (5’-3’) TTGGGAGGGTGTGGGTATT 

R primer (5’-3’) GGGACACCGCTGATCGTTTACCAAACCCRAAAACTACTC 

GAPDH 
F primer (5’-3’) CTCTGCTCCTCCTGTTCGAC 

R primer (5’-3’) ACCAAATCCGTTGACTCCGA 

SiR-ZFAS1 
Seq-1 CAAGGUUACUGUAUACAUAGC 

Seq-2 GAAUAUAUAUAUACAUAUAAA 

Note: F primer, forward primer; R primer, reverse primer; Seq, sequence. 

 

The creation of MRRS was based on the expression data 

multiplied by Cox regression coefficients. The formula 

was as follows, [Expression levels of AL359220.1 *  

(-0.27974)] + [Expression levels of SH3BP5-AS1 *  

(-0.16829)] + [Expression levels of ZF-AS1 * 

(0.142708)]. Patients were divided into high-risk group 

and low-risk group according to the median score of the 

MRRS.  

 
Bioinformatics analysis 

 
Kaplan‐Meier curve was used to evaluate the OS 

between high‐risk group and low‐risk group. Univariate 

Cox regression analysis and Pearson correlation analysis 

were used to identify the interest MRLNRs. Univariate 

and multivariate Cox regression analysis were used for 

identify the independent prognostic factors of LUAD 

patients. Based on the MRRS, ROC curve was employed 

to assess the sensitivity and specificity of the prognosis. 

Gene set enrichment analysis (GSEA) was displayed to 

explore the different functional phenotypes between the 

high‐risk group and the low‐risk group. The nomogram 

was constructed by rms package of R software to provide 

a reference for clinical evaluation of LUAD patients’ 

prognosis. 

 
Statistical analysis 

 
SPSS21.0 software (SPSS Inc, Chicago, IL, USA) and 

GraphPad Prism5 (GraphPad Software Inc, La Jolla, 

CA, USA) were employed to analyze data. Data were 

expressed as means ± SD. The relevance between  

lnR-ZFAS1 and clinicopathological features of LUAD 

patients was detected by using Fisher’s exact probability 

method. The differential comparison between two or 

more groups were analysed through Student T-test or 

ANOVA and post-hoc test respectively. P<0.05 was 

considered a significantly statistical difference. 

Availability of data and materials 

 

Authors can provide all of the datasets on reasonable 

request.  
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Table 
 

Supplementary Table 1. Basic clinical characteristic 
information of LUAD patients from TCGA. 

Characteristic  TCGA 

Age 
<65 203 (45%) 

≥65 253 (55%) 

Gender 
FEMALE 248 (54%) 

MALE 208 (46%) 

Stage 
Stage I-II 356 (78%) 

Stage III-IV 100 (22%) 

T stage 
T1-2 397 (87%) 

T3-4 59 (13%) 

N stage 
N0 304 (67%) 

N1-3 152 (33%) 

M stage 
M0 435 (95%) 

M1 21 (5%) 

 


