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INTRODUCTION 
 

Endometrial cancer (EC) exhibits the highest prevalence 

among gynecological malignancies in the USA, Europe, 

and specific developed regions. While a significant 

number of EC patients can be diagnosed at an early 

stage, thereby enhancing their chances of survival 

through effective treatment, the prognosis for patients 

with advanced EC is often unfavorable [1, 2]. Hence, 
the identification of a novel molecular biomarker that 

enables precise diagnosis, treatment, and prognosis for 

EC is of utmost importance. 

Metabolic dysregulation is a prominent characteristic of 

tumors and exerts a crucial influence on tumor initiation 

and progression [3–5]. Fatty acid metabolism, 

functioning as a pivotal intracellular process, facilitates 

the conversion of nutrients into indispensable metabolic 

intermediates, which contribute to membrane bio-

synthesis, energy reservoir, and the synthesis of pivotal 

signaling molecules [6]. Alterations in fatty acid 

metabolism represent a significant metabolic phenotype 

observed in tumor cells. Impeding the lipid supply to 

tumor cells profoundly impacts their bioenergetic status, 

membrane biogenesis, and intracellular signaling 
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ABSTRACT 
 

The deregulation of fatty acid metabolism plays a pivotal role in cancer. Our objective is to construct a 
prognostic model for patients with endometrial carcinoma (EC) based on genes related to fatty acid 
metabolism-related genes (FAMGs). RNA sequencing and clinical data for EC were obtained from The Cancer 
Genome Atlas (TCGA). Lasso-Penalized Cox regression was employed to derive the risk formula for the model, 
the score = esum(corresponding coefficient × each gene’s expression). Gene set enrichment analysis (GSEA) was utilized to examine 
the enrichment of KEGG and GO pathways within this model. Correlation analysis of immune function was 
conducted using Single-sample GSEA (ssGSEA). The “ESTIMATE” package in R was utilized to evaluate the tumor 
microenvironment. The support vector machine recursive feature elimination (SVM-RFE) and randomforest 
maps were employed to identify key genes. The effects of PTGIS on the malignant biological behavior of EC 
were assessed through CCK-8 assay, transwell invasion assay, cell cycle analysis, apoptosis assay, and tumor 
xenografts in nude mice. A novel prognostic signature comprising 10 FAMGs (INMT, ACACB, ACOT4, ACOXL, 
CYP4F3, FAAH, GPX1, HPGDS, PON3, PTGIS) was developed. This risk score serves as an independent prognostic 
marker validated for EC. According to ssGSEA analysis, the low- and high-risk groups exhibited distinct immune 
enrichments. The key gene PTGIS was screened by SVM-RFE and randomforest method. Furthermore, we 
validated the expression of PTGIS through qRT-PCR. In vitro and in vivo experiments also confirmed the effect 
of PTGIS on the malignant biological behavior of EC. 
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cascades [7–9]. Furthermore, this perturbation also exerts 

an impact on diverse aspects such as tumor cell 

migration, initiation of angiogenic processes, estab-

lishment of metabolic symbiosis, evasion of immune 

surveillance, and development of resistance to thera-

peutic agents within tumor microenvironments. This 

phenomenon assumes a significant role not only in liver 

and breast cancer but also in various other malignancies 

[10, 11]. Nevertheless, the prognostic significance of 

genes associated with fatty acid metabolism in EC, as 

well as their association with immunotherapy and 

chemotherapy treatment, remains largely elusive. 

 

In our investigation, we conducted a comprehensive 

analysis of prognostic genes associated with fatty acid 

metabolism and differentially expressed groups related to 

fatty acid metabolism. Subsequently, we employed 

LASSO regression to build a prognostic model. The 

nomogram incorporated both the risk scores generated by 

the model and clinical data of EC patients. The prognostic 

model demonstrated its status as an independent 

prognostic factor for EC, exhibiting strong predictive 

capability and outperforming existing models in terms of 

predictive efficacy. By utilizing support vector machine 

recursive feature elimination (SVM-RFE) and random-

forest maps, we successfully identified prostacyclin 

synthase (PTGIS) as a key gene within the model. 

To further validate the role of PTGIS in EC, we conducted 

in vivo and in vitro experiments, providing novel insights 

into prognosis and precision medicine in EC. 
 

RESULTS 
 

Our study initially developed an advanced prognostic 

model for EC utilizing genes associated with fatty acid 

metabolism, surpassing the performance of existing 

models. Subsequently, we focused on investigating the 

role of the key gene PTGIS within this model using 

SVM and random forest methods. Our subsequent 

experiments provided substantial evidence supporting 

the impact of PTGIS on the malignant biological 

behavior of EC. Consequently, PTGIS emerges as a 

promising candidate worthy of consideration as a 

prospective therapeutic target in EC (Figure 1). 

 

 
 

Figure 1. Comprehensive prognostic value analysis framework of fatty acid metabolism-related genes (FAMGs) in uterine 
corpus endometrial carcinoma (UCEC) patients based on TCGA database. 
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Construction of a prognostic model 

 

In the univariate Cox regression analysis, it was 

observed that 77 out of 309 fatty acid metabolism-

related genes (FAMGs) exhibited associations with 

overall survival (OS) (Figure 2A). Vol map was used to 

identify 69 differentially expressed FAMGs 

(DEFAMGs) (Figure 2B). The intersection of 

 

 
 

Figure 2. Screening of prognosis FAMGs and construction of prognosis model. (A) Univariate Cox regression analysis to identify 

the candidate prognosis-related hub LMGs in UCEC. (B) volcano plot of Differentially expressed LMGs (DEFAMGs): upregulated DELMGs are 
indicated by red dots, and downregulated DELMGs are indicated by green dots. (C) The DEIRGs were intersected with the prognosis-related 
LMGs. (D) A univariate analysis of the intersection genes was obtained. (E) Partial likelihood deviation was plotted relative to the logarithm 
of lambda in 10-fold cross-validation. (F) The trajectory graph of each variable. (G) Survival curves and ROC curves of high and low risk 
groups in the training group. (H) The risk score value of each sample, the survival status ranked from low to high-risk scores in the training 
group. (I) Survival curves and ROC curves of high and low risk groups in the test group. (J) The risk score value of each sample, the survival 
status ranked from low to high-risk scores in the test group. 
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DEFAMGs and Prognostic associated FAMGs resulted 

in 15 common genes, as depicted in Figure 2C, 2D. To 

further refine the selection, Lasso-Cox regression 

analysis was employed, leading to the identification of 

these 15 common genes (Figure 2E, 2F). Risk score = 

e((−0.189 × Exp (INMT)) + (0.188 × Exp (ACACB)) + (−0.260 × Exp (ACOT4)) + 

(0.722 × Exp (ACOXL)) + (0.175 × Exp (CYP4F3)) + (−0.124 × Exp (FAAH)) + 

(−0.101 × Exp (GPX1)) + (−0.818 × Exp (HPGDS)) + (−0.054 × Exp (PON3)) + 

(0.260 × Exp (PTGIS))). Kaplan-Meier (KM) analysis 

demonstrated that patients with high-risk scores 

exhibited significantly worse outcomes in the training 

group (Figure 2G). The area under the receiver 

operating characteristic (ROC) curves (AUCs) for 1-, 3-, 

and 5-year OS was calculated as 0.745, 0.770, and 

0.748, respectively, in the training group (Figure 2G). 

Figure 2H depicted the distribution of risk scores and 

survival status among patients in the training group. We 

did the same analysis in the test group. The same 

analysis was conducted in the test group, where the risk 

score also demonstrated robust predictive ability 

(Figure 2I, 2J). Furthermore, Principal Component 

Analysis (PCA) and t-SNE analysis revealed that the 

model effectively differentiated between high and low-

risk groups in both the training set (Figure 3A, 3B) and 

the test set (Figure 3C, 3D). Subsequent validation 

through univariate and multivariate analyses 

consistently corroborated the autonomous independent 

prognostic significance of the established risk score, 

substantiated across in both the training set (Figure 3E, 

3F) and the test set (Figure 3G, 3H). 

 

Establishment of the nomogram 

 

To enhance the predictive capability of our model, we 

further developed a nomogram, as depicted in Figure 

4A. The calibration curves demonstrated the accuracy 

and validity of the nomogram (Figure 4B). The AUCs 

for 1-, 3-, and 5-year OS using the nomogram were 

calculated as 0.798, 0.777, and 0.800, respectively 

(Figure 4C). Decision curve analysis (DCA) results 

 

 
 

Figure 3. Test of risk prediction model for UCEC patients. PCA plot for (A) training sets and (B) test sets. T-SNE analysis for (C) 

training sets and (D) test sets. (E, F) Univariate and multivariate analysis were performed to assess the clinicopathological prognostic value 
of the prediction model in the training group. (G, H) Univariate and multivariate analysis were performed to assess the clinicopathological 
prognostic value of the prediction model in the test group. 
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show that nomogram has good prediction efficiency 

(Figure 4D). KM analysis and ROC curves also 

illustrated the improved predictive power of the 

nomogram (Figure 4E, 4F). Additionally, the C-index 

results indicated that our constructed model out-

performed the three other models developed by Cai, 

Liu, and Liu J [12–14] (Figure 4G). 

Association analysis of risk score 

 

In our analysis, we conducted a further investigation 

into the correlation between risk scores and various 

clinicopathological parameters as well as immune 

subtyping. The correlation analysis revealed that the 

higher age group (>65 years), higher differentiation 

 

 
 

Figure 4. Establishment of nomogram and comparison with existing models. (A) Nomogram for predicting the 1-, 3-, and 5-year 

OS of UCEC patients. (B) Calibration curves for the prediction of 1-, 3- or 5-year overall survival of UCEC patients. (C) ROC curves for 
predicting the 1-, 3-, and 5-year OS of UCEC patients. (D) Decision Curve Analysis (DCA) curves for predicting the 1-, 3-, and 5-year OS of 
UCEC patients. (E, F) Survival curves and ROC curves of high and low risk groups in the model constructed by us. (G) C-index comparison of 
inflammatory models with other models. 
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group (tumor grade 3–4), and higher clinical stage 

(tumor stage III–IV) exhibited higher risk scores 

(Figure 5A–5C). Additionally, we observed that the 

immune subtype associated with a poor prognosis (C2) 

displayed a higher risk score compared to the immune 

subtype linked to a favorable prognosis (Figure 5D). 

Single-sample Gene Set Enrichment Analysis (ssGSEA) 

revealed that most of the immune cells and immune 

function were suppressed in the high-risk group, and 

fractions of CD8+T cells, DCs, iDCs, Macrophages, 

Neutrophils, pDCs, T helper cells, Th1 cells, and TIL 

were significantly decreased (Figure 5E). Moreover,  

 

 
 

Figure 5. Gene set enrichment analysis (GSEA) of biological functions and the association between risk score and tumor 
microenvironment. The risk score in different groups divided by age (A), grade (B), stage (C) and immune subtype (D). Comparison of the 

risk score in different immune infiltration. (E, F) The relationship between risk score and the scores of 16 immune cells and 13 immune-
related functions were showed in boxplots. (G) The relationship between risk score and DNAss, RNAss, Stromal Score and Immune Score. 
(H, I) GSEA showed eleven pathways enriched in the high-risk group. P values were showed as: Abbreviation: ns: not significant; *P < 0.05; 
**P < 0.01; ***P < 0.001. 
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APC, CCR, check-point, and HLA were lower in high-

risk group. (Figure 5F). 

 

In evaluating cancer stem cells (CSCs), DNA stemness 

score (DNAss) and RNA stemness score (RNAss) were 

utilized [15]. Correlation analysis revealed a positive 

correlation between the risk score and RNAss, 

indicating that higher risk scores corresponded to 

stronger stem cell characteristics in tumor cells (Figure 

5G). To assess the tumor microenvironment (TME), 

immune and stromal scores were employed. Correlation 

analysis demonstrated a negative correlation between 

the risk score and immune score (Figure 5G). 

 

In our study, we performed pathway enrichment 

analysis specifically for the high-risk group. The GSEA 

enrichment analyses revealed significant enrichments in 

various pathways. In the high-risk group, pathways such 

as adaptive immune response, mediated immunity, 

complement activation, B cell-mediated immunity, cell 

adhesion molecules, ECM receptor interaction, focal 

adhesion, neuroactive ligand-receptor interaction, and 

systemic lupus erythematosus exhibited significant 

enrichments (Figure 5H, 5I). 

 

Screening of key genes in the model 

 

We utilized random forest analysis to screen the 309 

FAMGs and identified genes relevant to EC (Figure 6A, 

6B). The SVM-RFE algorithm was employed to select 

the expression of feature genes from the 309 FAMGs 

(Figure 6C). By intersecting the results of random forest 

analysis with those of SVM-RFE, we identified 5 key 

characteristic genes (PTGIS, ACOX2, CYP1B1, IL4I1, 

PCCB) (Figure 6D). From these 5 key feature genes, we 

further intersected them with the genes involved in 

 

 
 

Figure 6. Feature gene selection. (A, B) Randomforest error rate versus the number of classification trees. (C) Biomarker signature gene 

expression validation by support vector machine recursive feature elimination (SVM–RFE) algorithm selection. (D) The intersection genes of 
SVM-RFE and randomforest were screened by Venn diagram. (E) The genes included in our model were intersected with key characteristic 
genes to obtain PTGIS. (F) The ROC curve of PTGIS predicted the incidence of UCEC in TCGA database. (G) The ROC curve of PTGIS predicted 
the incidence of EC in GSE17025. (H) Box plots showed the expression of PTGIS in normal and UCEC tissues from TCGA. (I) The transcription 
levels of PTGIS in UCEC compared with the paired normal endometrial tissue was showed based on TCGA datasets. (J) Box plots showed the 
expression of PTGIS in normal and EC tissues from GSE17025. (K) Expression of PTGIS in pan-cancer. 
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model construction and identified PTGIS as the key 

gene within the model (Figure 6E). The AUC of PTGIS 

as a diagnostic gene was determined as 0.988 in the 

TCGA-UCEC database (Figure 6F). To validate the 

diagnostic capability of PTGIS for EC, we obtained the 

external dataset GSE17025 and found that the AUC of 

PTGIS was 0.824 in this dataset (Figure 6G). 

Additionally, we observed down-regulated expression 

of PTGIS in both the TCGA-UCEC dataset (Figure 6H, 

6I), and the GSE17025 dataset, further confirming its 

association with EC (Figure 6J). Furthermore, in pan-

cancer analysis, it was consistently observed that PTGIS 

was down-regulated in most tumors (Figure 6K). 

 

Experimental validation of PTGIS 

 

The qRT-PCR results demonstrated down-regulation of 

PTGIS expression in EC (Figure 7A). Additionally, we 

conducted an analysis to examine the relationship 

between PTGIS expression and clinicopathological 

parameters. The findings indicated that PTGIS 

expression was decreased in the >65 age group, tumor 

stage III–IV group, and lymph node (LN) metastasis 

group (Figure 7B–7D). 

 

To evaluate the impact of PTGIS on cellular functions, 

we performed the CCK-8 assay to assess cell 

proliferation. The results demonstrated that over-

expression of PTGIS inhibited cell proliferation, 

whereas reducing PTGIS expression enhanced cell 

proliferation in ISHIKAWA and HEC-1A cells (Figure 

7E, 7F). Furthermore, overexpression of PTGIS 

decreased cell invasion ability, while decreased PTGIS 

expression promoted cell invasion (Figure 7G). 

Apoptosis experiments revealed that overexpression of 

PTGIS promoted apoptosis, whereas knockdown of

 

 
 

Figure 7. PTGIS regulates the biological behavior of EC cell lines. (A) he results of qRT-PCR showed the expression of PTGIS in 

normal endometrial tissue (n = 28) and human endometrial carcinoma tissue (n = 23). The expression of PTGIS in different groups divided 
by age (B), stage (C) and LN-metastasis (D). (E, F) CCK-8 assay was used to evaluate the proliferation effect of PTGIS. (G) Effect of LAMP3 on 
invasion assessed using the Transwell assay. 
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PTGIS inhibited apoptosis (Figure 8A). Cell cycle 

analysis demonstrated that compared to the PTGIS (+)-

NC group, the PTGIS (+) group exhibited a decrease in 

the number of cells in the G2-M phase of the cell cycle. 

Conversely, compared to the PTGIS (−)-NC group, the 

PTGIS (−)-NC group displayed an increased proportion 

of cells in the G2-M phase in both ISHIKAWA and 

HEC-1A cells (Figure 8B). The outcomes of the tumor 

formation experiment conducted in nude mice distinctly 

demonstrated that the overexpression of PTGIS yielded 

a notable suppression in tumor growth, as evidenced by 

a significant contrast between the PTGIS (+) group and 

 

 
 

Figure 8. PTGIS regulates the biological behavior of EC cell lines and in vivo study of tumor xenografts. (A) Cell apoptosis assay 

was used to determine the effect of PTGIS on the apoptosis of Ishikawa and HEC-1A cell lines. (B) Cell cycle analysis was used to detect the 
effect of PTGIS on the cell cycle of Ishikawa and HEC-1A cell lines. (C) The nude mice carrying tumors from the respective groups are shown. 
The sample tumors from the respective groups are shown (n = 3, each group). (D) Expression levels of Ki-67. 
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the PTGIS (+)-NC group (Figure 8C). Immuno-

histochemical results showed that the KI-67 staining 

score of PTGIS (+) group was lower than that of PTGIS 

(+)-NC, further indicating that overexpression of PTGIS 

inhibited the growth of EC (Figure 8D). 

 

DISCUSSION 
 

In developed countries, the incidence of EC has been 

steadily increasing, making it the most prevalent 

gynecological tumor in women [16–18]. Fortunately, due 

to the detectability of postmenopausal bleeding, most 

cases of endometrial cancer are diagnosed at an early 

stage, allowing for prompt and effective surgical 

treatment. This has resulted in a 5-year survival rate of 

nearly 95% for EC patients. However, in advanced stages 

of EC, where metastasis and invasion occur, the five-year 

survival rate drops to 16–45% [2]. The incidence of EC 

has been on the rise, with an average annual increase of 

1.9%. This increase can primarily be attributed to the 

growing prevalence of obesity [19, 20]. Therefore, it is 

crucial to identify new therapeutic targets and prognostic 

markers for EC to improve patient outcomes. 

 

Metabolic dysfunction is a significant characteristic of 

tumors, and the disruption of fatty acid metabolism 

plays a critical role in this process. Recent studies have 

highlighted the potential of targeting fatty acid 

metabolic pathways for drug therapy and immuno-

therapy in various types of tumors [21–23]. Fatty acid 

metabolism is involved in energy synthesis, production 

of signaling molecules, and regulation of the tumor 

microenvironment, thereby influencing tumor 

progression [24]. Although the significance of fatty acid 

metabolism has been extensively investigated in the 

context of breast and cervical cancer, there exists a 

noticeable dearth of research concerning the underlying 

mechanisms governing fatty acid metabolism in the 

initiation and advancement of EC [25, 26]. 

Consequently, the primary aim of this study was to 

establish a prognostic model for EC based on genes 

associated with FAMGs and identify significant 

therapeutic targets for EC. 

 

In the analysis using TCGA-UCEC data, we performed 

univariate analysis on the 309 FAMGs and identified 77 

FAMGs that were relevant to prognosis. Further 

differential expression analysis resulted in 69 

differentially expressed FAMGs. By intersecting these 

differentially expressed genes with the prognostic 

genes, we obtained 15 common genes. Through Lasso-

Cox regression analysis, we refined the selection to 

obtain a prognostic model comprising 10 genes: INMT, 

ACACB, ACOT4, ACOXL, CYP4F3, FAAH, GPX1, 

HPGDS, PON3, and PTGIS. The high-risk group 

identified by the model exhibited a worse prognosis, 

and the risk score derived from the model served as an 

independent prognostic factor. Nomograms were 

constructed to provide improved predictions of patient 

outcomes. The comparative analysis demonstrated that 

our model outperformed existing models. Correlation 

analysis between the risk score and clinicopathological 

parameters revealed a positive correlation between the 

risk score and clinical risk factors. Higher risk scores 

were associated with higher clinical risks factors such as 

stage III–IV, grade 3–4, and age >65. Furthermore, 

analysis of immune subtypes showed higher risk scores 

in the C1, C2, and C4 subtypes, which are known to be 

associated with poorer prognosis [27]. These findings 

support the conclusion that the high-risk group indeed 

exhibited a worse prognosis. 

 

Many studies have demonstrated the impact of 

abnormal fatty acid metabolism on the tumor micro-

environment, thereby promoting tumor progression [28, 

29]. In our study, we observed that the high-risk group 

exhibited suppression of immune cells (CD8+T cells, 

DCs, iDCs, Macrophages, Neutrophils, pDCs, T helper 

cells, Th1 cells, and TIL) and immune function (APC, 

CCR, check-point, and HLA) compared to the low-risk 

group. The levels of these immune cells and functions 

represent the immunity level of each sample. These 

results suggest that abnormal fatty acid metabolism in 

EC may further enhance tumor progression by 

inhibiting immune function and immune response. 

Previous studies have indicated that abnormal fatty acid 

metabolism may be associated with resistance to 

immunotherapy in liver cancer [30]. Additionally, 

FDX1, a gene related to fatty acid metabolism, has been 

shown to regulate the progression of clear-cell renal 

carcinoma by influencing the immune micro-

environment of tumor cells [31]. Furthermore, there is 

evidence linking fatty acid metabolism to immune 

checkpoints in melanoma [32]. In summary, fatty acid 

metabolism plays a significant role in immune 

regulation [33]. 

 

The correlation analysis results between the tumor 

microenvironment and risk score indicated that the risk 

score exhibited a positive correlation with RNAss  

and a negative correlation with immune score. It is  

well-established that CSCs possess the capability to 

self-renew and differentiate, contributing to cancer 

recurrence, chemotherapy resistance, and tumor 

progression. Emerging studies have revealed an 

association between fatty acid metabolism and tumor 

stem cells [34]. Abnormal fatty acid metabolism is 

believed to provide an enhanced energy supply to 

sustain the maintenance of tumor stem cells [35]. 
 

To further refine the selection of key genes in our 

model, we employed the SVM-RFE and random forest 
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methods for joint analysis. This approach led us to 

identify PTGIS as a key gene in the model. As a 

diagnostic gene for EC, PTGIS exhibited an impressive 

AUC of 0.988 in the TCGA-UCEC dataset. 

Furthermore, validation using the external dataset 

GSE17025 yielded an AUC of 0.824 for PTGIS as a 

diagnostic gene. Notably, PTGIS not only played a 

crucial role in the prognostic model but also 

demonstrated substantial potential as a standalone 

diagnostic gene. Expression analysis revealed a down-

regulation of PTGIS in EC as well as in several other 

tumor types. This suggests that PTGIS may function as 

a tumor suppressor gene and holds significance in the 

context of EC. To further substantiate the importance of 

PTGIS in EC, we conducted in vivo and in vitro 

experiments. qRT-PCR experiments performed on 

pathological tissues from Shengjing Hospital confirmed 

the reduced expression of PTGIS in EC. Furthermore, 

the findings derived from both in vitro and in vivo 

experiments offered supplementary substantiation, 

affirming the involvement of PTGIS in impeding the 

advancement of cancer within the scope of EC. 

 

PTGIS serves as an enzyme responsible for the 

synthesis of prostacyclin, a crucial mediator in vascular 

dilation and anticoagulant processes. Prior research has 

indicated that mutations within the PTGIS gene could 

potentially heighten the vulnerability to pulmonary 

hypertension [36]. Additionally, PTGIS methylation has 

been implicated in promoting liver fibrosis [37], and 

PTGIS has been found to protect hematopoietic stem 

cells in specific conditions [38]. More recently, studies 

have shed light on the involvement of PTGIS in various 

types of tumors. PTGIS has been implicated in the 

progression of stomach, ovarian, and lung cancers [39]. 

Furthermore, PTGIS is involved in regulating the 

malignant behavior of bladder cancer under hypoxic 

conditions [40]. In the context of endometriosis, PTGIS 

has been shown to regulate disease progression through 

its influence on CD16-NK cells, although no studies 

have been reported on PTGIS in the context of EC [41]. 

Our study not only provides a novel and effective 

predictive model for EC prognosis but also establishes a 

solid foundation for the investigation of fatty acid 

metabolism in EC. Importantly, our findings 

demonstrate that PTGIS can serve as an ideal diagnostic 

indicator and potentially acts as a tumor suppressor 

gene in EC. These discoveries position PTGIS as a 

promising candidate for future therapeutic interventions 

targeting EC. 

 

This study does have certain limitations that need to be 

acknowledged. There was no external validation due to 
the lack of other datasets with UCEC clinical data. The 

applicability and effectiveness of the prognostic model in 

clinical practice require further validation, and future 

studies are planned to address these aspects. Nonetheless, 

this study represents the first successful construction of 

an EC prognostic model utilizing genes associated with 

fatty acid metabolism, allowing for accurate prediction of 

EC patient prognosis. Furthermore, we have identified 

PTGIS as a key gene within the model, highlighting its 

potential as a diagnostic, predictive, and therapeutic 

target for EC patients. 

 

CONCLUSION 
 

The novel FAMGs-based model we have constructed 

demonstrates consistent and reliable predictive 

capability concerning patient prognosis within the 

context of EC. This model exhibits considerable 

potential as a prospective prognostic indicator for 

individuals diagnosed with EC, aiding in personalized 

cancer treatment and precision medicine. Furthermore, 

our identification of PTGIS as a key gene within the 

model highlights its potential as a target for EC 

diagnosis, prediction, and treatment. These findings 

carry important clinical implications, offering potential 

value in enhancing the management of prognosis for EC 

patients. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

We collected clinical information and RNA sequencing 

datasets (FPKM) from the TCGA database for patients 

with uterine corpus EC (UCEC). The dataset comprised 

RNA sequencing data from 552 UCEC tissues and 35 

normal tissues, along with clinical information for 541 

patients. To identify the FAMGs, we selected genes 

from the Reactome fatty acid metabolism genes, KEGG 

fatty acid metabolism pathways, and Hallmark fatty 

acid metabolism genes databases (available at gsea-

msigdb.org). After removing duplicates, we obtained a 

total of 309 unique FAMGs for further analysis [42]. 

 

Identification of FAMGs and construction of model 

 

In our study, a univariate Cox regression analysis was 

conducted encompassing the cohort of 309 FAMGs. For 

the identification of differentially expressed FAMGs, 

we employed the “Limma” package. As the TCGA 

dataset was the only source of prognostic information 

for EC patients available, our model could only be 

internally tested using this dataset. To conduct the 

analysis, we randomly divided the TCGA-UCEC 

patients into a training set (n = 272) and a test set (n = 

269). Subsequently, we utilized LASSO-penalized Cox 
regression analysis in the training set to further refine 

our model [43]. The risk score = esum(each gene’s expression × 

corresponding coefficient). In the training group of UCEC 
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patients, the prognosis data was stratified into high-risk 

and low-risk subgroups based on a predefined cutoff 

value. The validity of the established model was then 

verified using the test group. Additionally, we 

constructed a Nomogram that incorporated clinical 

information of EC patients and compared it with 

previously established models. To assess pathway 

enrichment, we performed GSEA analysis. Further-

more, the correlation between risk scores and patients’ 

immune function was evaluated using ssGSEA analysis 

[44]. For the purpose of screening key genes in the 

model, we utilized the R packages “randomForest”, 

“kernlab”, and “caret” for SVM and random forest map 

analysis. 

 

Tumor microenvironment analysis 

 

We utilized the R package “ESTIMATE” to calculate 

immune and stromal scores for each sample. 

Subsequently, the “limma” package was employed to 

determine the correlation between risk scores and 

immune and stromal scores, respectively [44]. To assess 

the level of CSCs in each patient’s tumor, we down-

loaded epigenome and transcriptome data and 

performed correlation analyses to evaluate the 

relationship between risk scores and CSCs. 

 

Human tissue specimens 

 

We collected a total of 28 normal endometrial tissues 

and 23 EC tissues from Shengjing Hospital of China 

Medical University, China, between 2019 and 2021. 

 

Before being included in the study, all participants 

granted their informed consent, thus adhering to ethical 

practices. The clinicopathological attributes of all 

individuals were procured, and the histopathological 

characterization of all cases of endometrial carcinoma 

was definitively ascertained as endometrial adeno-

carcinoma. The pathological diagnosis of EC was 

established by two experienced pathologists following 

the guidelines set forth by the International Federation 

of Gynecology and Obstetrics (FIGO 2009). None of 

the patients received any form of hormone therapy, 

radiotherapy, chemotherapy, or other treatments prior to 

surgery. 

 

qRT-PCR 

 

For RNA extraction, we utilized the TRIzol reagent 

(Vazyme, Nanjing, China) following the manufacturer’s 

instructions. Subsequently, cDNAs were synthesized 

using Prime Script RT-polymerase (Vazyme). The 
expression levels of the target genes were determined 

using SYBR Green Premix (Vazyme) along with 

specific PCR primers obtained from Sangon Biotech 

Co., Ltd., (Shanghai, China). The primer sequences can 

be found in Supplementary Table 1. Fold changes were 

calculated using the 2(−ΔΔCT) method, which compares 

the relative expression levels between samples. 

 

Transfection of cells 

 

PTGIS lentiviral overexpression were purchased from 

Hanbio Tech (Shanghai, China). SiRNA sequences 

targeting PTGIS were procured from GenePharma 

(Shanghai, China). Sequences of siRNA are listed  

in Supplementary Table 2. Lipofectamine 3000 

(Invitrogen) was employed to effectuate the transfection 

of cells with the small interfering RNA (siRNA), as 

directed by the manufacturer’s stipulated guidelines. 

 

Cell culture 

 

ISHIKAWA cells and HEC-1A cells were cultivated 

utilizing medium 1640 (Gibco, Carlsbad, CA, USA) 

and 5A (Gibco), respectively. A 10% concentration of 

fetal bovine serum (FBS) (Gibco) and 1% penicillin–

streptomycin was supplemented to the cellular medium. 

Subsequently, all cells were nurtured in a humidified 

incubation chamber maintained at a temperature of 

37°C with a 5% concentration of carbon dioxide 

(CO2). 

 

CCK-8 assay 

 

Ishikawa and HEC-1A cells were seeded in 96-well 

plates, followed by the addition of CCK-8 reagent (10 

µL) (Dojindo, Japan) to each well. Subsequently, the 

plates were incubated at a temperature of 37°C with a 

5% concentration of carbon dioxide (CO2) for a 

duration of 3 hours. To determine the optical density 

(OD450) values, a microplate reader (Bio-Rad, 

Hercules, United States) was employed at four time 

points: 0 hours, 24 hours, 48 hours, and 72 hours post-

treatment. 

 

Cell invasion assay 

 

The Transwell assay was employed to evaluate cell 

invasions. 8 μm Transwell chambers were pre-coated 

with a Matrigel solution prior to cell seeding. 

Subsequently, a 200 μl serum-free medium containing 

2 × 104 cells was introduced into the upper chamber, 

while a 500 μl solution of 10% FBS serum was added to 

the lower chamber. Following a 24-hour incubation 

period, the cells were fixed using 4% paraformaldehyde 

and stained with crystal violet, enabling visualization of 

the cells beneath the chamber through the Matrigel. 
Subsequently, images were captured using a fluorescent 

inverted microscope (NIKON, Japan) at a magnification 

of 200×, and subsequently subjected to analysis. 
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Apoptosis assay 

 

Following cell transfection, a total of 106 cells from 

each experimental group were subjected to a PBS wash. 

Subsequently, the cells were incubated at room 

temperature, shielded from light, with PE Annexin V 

and 7AAD dye for a duration of 15 minutes. Flow 

cytometry analysis was performed using a Beckman 

DxFLEX instrument located in Suzhou, China to 

quantify the percentage of apoptotic cells within the 

various experimental groups. 

 

Cell cycle analysis 

 

After cell transfection, a total of 106 cells were 

harvested and suspended in 70% ethanol, then stored 

at 4°C overnight. After PBS rinsing, 100 µL of RNase 

A was added to the cell suspension and incubated in a 

water bath at 37°C for 30 minutes. Subsequently, 

400 µL of propidium iodide (PI) was introduced into 

the mixture, which was then subjected to an additional 

incubation period at 4°C, shielded from light, lasting 

for 30 minutes. The ensuing cell suspension was 

subsequently subjected to flow cytometry analysis, 

thereby facilitating the assessment of the cellular 

distribution spanning various phases of the cell cycle. 

 

Tumor xenografts in nude mice 

 

BALB/cA-nu mice, aged 4–6 weeks, were procured 

from HFK Bioscience (Beijing, China). Each mouse 

was subcutaneously injected with 106 transfected cells in 

the axillary region. Animal experiments were conducted 

in strict accordance with the protocol approved by the 

Scientific Research and New Technology Ethical 

Committee of the Shengjing Hospital of China Medical 

University. The graft volume was assessed using the 

following formula: tumor volumes (mm3) = length × 

width2/2. Tumor measurements were recorded every 4 

days until 28 days later when the mice were euthanized. 

The tumors were fixed in a 4% poly sound solution, 

subjected to dehydration, paraffin embedding, and 

finally cut into paraffin sections for subsequent 

immunohistochemical analysis. 

 

Availability of data and materials 

 

All data generated or analyzed during this study are 

included in this article. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Supplementary Table 1. Primer sequence. 

Gene name Primer sequence 

PTGIS 
Forward: AAAGTCGCCTGTGGAAGCTG 

Reverse: TGCCTGCATCTCCTCTGACA 

GAPDH 
Forward: CAGGAGGCATTGCTGATGAT 

Reverse: GAAGGCTGGGGCTCATTT 

 

 
Supplementary Table 2. Sequence of siRNA. 

Name Sequence 

PTGIS-Homo-544 
Sense (5′–3′): GCCGGCUACCUGACUCUUUTT 

Antisense (5′–3′): AAAGAGUCAGGUAGCCGGCTT 

 


