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INTRODUCTION 
 

Colorectal cancer is the third most prevalent malignancy 

and the second most deadly, and is a major public 

health problem worldwide. It is a major public health 

problem worldwide [1, 2]. Surgery is the treatment  

of choice for primary colorectal cancer and has the 

advantages of being effective and non-biologically 

resistant, but it is risky and traumatic. Radiotherapy  

and chemotherapy are often used as adjuvant therapies 

to surgical treatment, but have high toxic side effects. 

With the improvement of diagnosis and advances  

in targeted therapy technology, there is an increasing 

interest in molecular targets for colorectal cancer that 

indicate significant effects [3–5]. 

 
The Eph receptor family is the largest family of receptor 

tyrosine kinases and is a key regulator of cell growth, 

differentiation and motility [6–8]. Eph receptors and 

their ligands, Ephrin proteins (Eph receptor interacting 

proteins), play a key role in many pathological states 

(abnormally elevated RTK activity is a feature of most 

human cancers), and therefore Eph receptors can be  

used as potential drug targets [9, 10]. There are 14 Eph 

receptors in the human genome, which can be sub-

divided into EphA and EphB subclasses. EphA2 is a 
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ABSTRACT 
 

Colorectal cancer is one of the most common malignant tumors in the digestive system, and its high incidence 
and metastasis rate make it a terrible killer that threatens human health. In-depth exploration of the targets 
affecting the progression of colorectal cancer cells and the development of specific targeted drugs for them are 
of great significance for the prognosis of colorectal cancer patients. Erythropoietin-producing hepatocellular A2 
(EphA2) is a member of the Eph subfamily with tyrosine kinase activity, plays a key role in the regulation of 
signaling pathways related to the malignant phenotype of various tumor cells, but its specific regulatory 
mechanism in colorectal cancer needs to be further clarified. Here, we found that EphA2 was abnormally highly 
expressed in colorectal cancer and that patients with colorectal cancer with high EphA2 expression had a worse 
prognosis. We also found that EphA2 can form liquid-liquid phase separation condensates on cell membrane, 
which can be disrupted by ALW-II-41-27, an inhibitor of EphA2. In addition, we found that EphA2 expression in 
colorectal cancer was positively correlated with the expression of ferroptosis-related genes and the infiltration 
of multiple immune cells. These findings suggest that EphA2 is a novel membrane protein with phase 
separation ability and is associated with ferroptosis and immune cell infiltration, which further suggests that 
malignant progression of colorectal cancer may be inhibited by suppressing the phase separation ability of 
EphA2. 
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member of the Eph family, and high expression of 

EphA2 occurs in a variety of tumors, such as liver cancer, 

breast cancer, colorectal cancers, bladder cancer and 

glioblastoma, and EphA2 is a key driver of metastasis 

and a predictor of poor prognosis in several tumors [9, 

11–13]. EphA2 has both classical and non-classical 

modes of driving tumorigenesis. The classical mode 

means that EphA2 inhibits positive signaling of ligands 

and tyrosine kinases, thereby suppressing tumorigenesis. 

Inhibiting Focal Adhesion Kinase (FAK), Protein Kinase 

B (PKB) and Extracellular Regulated Rotein Kinases 

(ERK) affects cell motility and survival. The non-

classical pathway refers to EphA2 ligands and tyrosine 

kinase non-dependent activation and phosphorylation. 

Inflammatory cytokines and growth factors via RSK 

AKT and Protein Kinase A (PKA) induce phospho-

rylation of EphA2 Ser897. This phosphorylation is  

able to localize EphA2 at the frontier of migrating  

cells, leading to actin cytoskeleton framework assembly 

and lamellipid membrane formation, promoting and 

maintaining certain cancer cell functions, such as cell 

motility and proliferation [14, 15]. 

 
In recent years, phase separation of biological 

macromolecules has gained much attention. Phase 

separation, also known as biomolecular condensates,  

is involved in regulating a variety of physiological 

processes, including gene expression, DNA damage 

repair, signal transduction, cellular metabolism, and 

immune regulation, by forming membraneless organelles 

[15–20]. Multivalent interactions are key in driving 

phase separation [21, 22]. Dysregulation of phase 

separation can lead to the formation of abnormal 

condensates, which can cause a variety of human 

diseases, such as cancer and neurodegenerative diseases 

[23, 24]. More and more studies are now also focusing 

on cell membrane molecules that can also transmit 

cellular signals through the occurrence of phase 

separation, including T cell receptors, androgen 

receptors, receptor tyrosine kinases, etc., [25–27]. 

Whether EphA2, an important receptor tyrosine kinase, 

can promote tumor development through the occurrence 

of phase separation has not been reported. 

 
Here, we found that EphA2 was abnormally highly 

expressed in colorectal cancer tissues, and patients  

with high EphA2 expression had a worse prognosis. 

Interestingly, we found that EphA2 has multiple 

intrinsically disordered regions (IDRs), which is an 

important basis for the occurrence of phase separation 

[28, 29]. Indeed, we also further confirmed in the  

cells that EphA2 can undergo phase separation at the 

cell membrane. The EphA2 phase separation was 

significantly disrupted when treated with ALW-II-41-

27, an inhibitor of EphA2. In addition, we also found 

that EphA2 expression was significantly correlated 

with the expression of ferroptosis-related genes and 

the infiltration of immune cells. These results suggest 

that EphA2 may perform its tumor-promoting function 

through its phase-separating properties, which also 

provides a possibility to treat tumors by developing 

drugs that target EphA2 phase separation. 

 

MATERIALS AND METHODS 
 

Expression analysis 

 

UALCAN (http://ualcan.path.uab.edu/) is a comprehensive 

website for analyzing canceromics data. We used 

UALCAN to analyze mRNA and protein expression 

levels of EphA2 in colorectal cancer samples and 

normal samples from The Cancer Genome Atlas 

(TCGA) and Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) databases. 
 

We analyzed the mRNA expression levels of EphA2 in 

colorectal cancer tissues and normal tissues using two 

datasets numbered GSE21815 and GSE37182 from the 

Gene Expression Omnibus (GEO) database. 

 

Immunohistochemical analysis (IHC) 

 

The Human Protein Atlas database (HPA) 

(http://www.proteinatlas.org) contains protein expression 

images in various cells, tissues and organs. We analyzed 

the immunohistochemical images of EphA2 in colorectal 

cancer tissues and normal tissues using HPA database. 

 

Survival analysis 

 

The Kaplan Meier plotter database (http://kmplot. 

com/analysis/) is able to assess the correlation between 

gene expression and survival in a variety of tumor 

types. We used this database to analyze the correlation 

between EphA2 expression and patient survival in 

colorectal cancer patients. 

 

Tumor mutational burden (TMB) and microsatellite 

instability (MSI) analysis 

 

Gene expression data from the TCGA database  

for colorectal cancer and the corresponding clinical 

information were used. The correlation of EphA2 

expression with TMB and MSI was examined using 

Spearman's correlation analysis. 

 

Analysis of internal disordered regions (IDRs) and 

net charge per residue (NCPR) of proteins 

 

The amino acid sequence of EphA2 was uploaded  

to the Predictor of Natural Disordered Regions 

(PONDR) database (http://www.pondr.com) to analyze 

http://ualcan.path.uab.edu/
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its internal disordered region. The Classification of 

Intrinsically Disordered Ensemble Regions (CIDER) 

database (http:// 157.245.85.131:8000/CIDER/) allows 

the calculation of many different parameters associated 

with disordered protein sequences. We used this data-

base to analyze the net charge per residue of EphA2 

amino acid sequence. 

 
Live cell immunofluorescence assay 

 

The cells were incubated in an incubator for 

approximately 6 hours and then transfected with the 

EGFP-EphA2 plasmid when the cells were sufficiently 

attached to the wall. Leica TCS SP8 confocal microscope 

was used for imaging. Cells were imaged on a heated 

plate (37°C) at all times during the imaging process. 

 
Fluorescence recovery after photobleaching (FRAP) 

assay 

 

FRAP was performed using a Leica TCS SP8  

confocal microscope and 2.4 mW laser intensity for 

bleaching at room temperature, and a 63 × /1.4 oil 

immersion objective and photomultiplier detector for 

imaging. Considering the size of the droplets, different 

droplets and target areas were selected for the FRAP 

experiments in cells, and in each FRAP experiment, 

another region with the same fluorescence intensity as 

the droplet size used for photobleaching was recorded 

for fluorescence intensity correction. 

 

RESULTS 
 

EphA2 is aberrantly highly expressed in colorectal 

cancer and is associated with prognosis 

 

To verify the correlation between EphA2 and colorectal 

cancer, we found that the mRNA expression level of 

EphA2 was significantly higher in colorectal samples 

than in normal tissues using TCGA samples from the 

UALCAN database (https://ualcan.path.uab.edu/index. 

html), and similarly, we analyzed the protein expression 

level of EphA2 using CPTAC samples and also found 

that its expression was significantly higher in colorectal 

cancer tissues than in normal samples (Figure 1A). We 

further analyzed two datasets in the GEO database 

(GSE21815 and GSE37182) and found that EphA2 

expression was significantly upregulated in tumors 

(Figure 1B). Then, we assessed the protein expression 

levels of EphA2 in normal and colorectal cancer tissues 

by tissue samples from the Human Protein Atlas 

database. The immunohistochemical (IHC) staining  

data as shown in Figure 1C revealed that the protein 
expression level of EphA2 was significantly elevated in 

tumor tissues. Using the Kaplan Meier plotter database 

(http://kmplot.com/analysis/), we analysed the relevance 

of EphA2 expression to the prognosis of colorectal 

cancer patients and found that among 551 colorectal 

cancer patients, those with high EphA2 expression had a 

worse prognosis (Figure 1D). MSI and TMB have been 

used as predictive biomarkers for immunotherapy in a 

variety of tumours [30–32]. We analysed the correlation 

between EphA2 expression and MSI and TMB using 

TCGA colorectal cancer data and found a significant 

positive correlation between EphA2 expression and MSI 

and TMB scores (Figure 1E, 1F). 

 
EphA2 shows properties of liquid–liquid phase-

separated condensates 

 
Phase separation is the main mechanism for the 

formation of membraneless compartments in cells and 

is involved in the regulation of cellular metabolism, 

signal transduction, gene expression and protein homeo-

stasis. In recent years, researchers have found that phase 

separation and cancer are closely linked, by affecting 

DNA repair processes, transcriptional regulation as well 

as the assembly of important membrane-free compart-

ments in cancer [23, 33–35]. 

 
To investigate whether EphA2 can undergo phase 

separation, we first analysed the internal disordered 

region and net charge per residue of EphA2 amino acid, 

which are important factors for phase separation to 

occur [36–38], using the PONDR and CIDER databases. 

We found that EphA2 has a significant internal dis-

ordered region (IDR) and that its amino acid residues 

carry a significant net charge (Figure 2A, 2B). To further 

confirm that EphA2 can undergo phase separation, we 

transfected GFP-EphA2 fusion plasmids into HEK293 

cells and used immunofluorescence assays to find that 

EphA2 forms puncta on the cell membrane, which may 

be condensates formed by phase separation. We further 

found that EphA2 puncta were significantly disrupted 

after treatment of GFP-EphA2-expressing cells with  

the phase separation disruption reagent 1,6 hexanediol 

(Figure 2C, 2D). An important feature of phase-separated 

condensates is that they exhibit rapid exchange kinetics 

with their surroundings [39, 40]. To demonstrate the 

dynamic characteristics of GFP-EphA2 puncta, we 

performed fluorescence recovery after photobleaching 

(FRAP) experiments in GFP-EphA2-positive live cells 

and found that bleaching the GFP-EphA2 puncta  

could be followed by rapid recovery within a short 

period of time (Figure 2E, 2F). Furthermore, we found 

that individual GFP-EphA2 condensates exhibit rapid 

changes in size and fluorescence intensity, and that when 

the condensates meet each other they aggregate to form 

larger puncta (Figure 3A). These results suggest that 
EphA2 forms punctate structures on cell membranes 

with properties consistent with liquid-liquid phase 

separation condensates. 

https://ualcan.path.uab.edu/index.%20html
https://ualcan.path.uab.edu/index.%20html
http://kmplot.com/analysis/
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Inhibitors of EphA2 can disrupt its phase separation 

properties 

 

The ATP-competitive tyrosine kinase inhibitor ALW-II-

41-27 (ALW) of EphA2 has been shown to inhibit the 

growth of a variety of tumour cells in vitro and in vivo [9, 

41]. To investigate the effect of ALW on EphA2 phase 

separation, we first used molecular docking techniques 

to demonstrate that ALW can bind to multiple pockets of 

EphA2 protein (Figure 3B). We also further found, using 

FRAP experiments, that the dynamic properties of the 

bleached GFP-EphA2 phase separation condensate were 

significantly weaker after treating the cells with ALW 

(Figure 3C, 3D). These results suggest that inhibitors of 

EphA2 can disrupt its phase separation properties. 

 

EphA2 is associated with ferroptosis 

 

Ferroptosis is a form of programmed cell death diffe-

rent from apoptosis and necrosis, characterized by the

 

 

 
Figure 1. Abnormal expression of EphA2 in colorectal cancer and its relationship with prognosis. (A) Analysis of EphA2 mRNA 
and protein expression in colorectal cancer tissues and normal tissues using the UALCAN database. (B) Analysis of EphA2 mRNA expression 
in colorectal cancer tissues and normal tissues using the GEO database. (C) EphA2 expression data from HPA database in colorectal cancer 
tissues and normal tissues. (D) Overall survival of colorectal patients with differential EphA2 expression. (E, F) Correlation of EphA2 
expression with MSI and TMB in colorectal cancer patients. 
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accumulation of peroxidized lipids in the cell  

membrane and intracellular reactive oxygen species 

clusters up to lethal levels, mainly involving bio- 

logical processes such as glutathione metabolism, iron 

metabolism, lipid metabolism and oxidative stress. In  

recent years, numerous studies have identified the role  

of ferroptosis in anti-tumour, and targeting ferroptosis-

related mechanism pathways can effectively inhibit 

tumourigenesis and development [42–44]. To explore 

the relationship between EphA2 and ferroptosis, we first 

analysed differential gene expression in samples with 

differential EphA2 expression using TCGA colorectal 

cancer samples, and in total we identified seven up-

regulated and 92 down-regulated genes (Figure 4A, 

4B). We further performed KEGG and GO analysis on 

the differential genes regulated by EphA2 and found 

that these gene-enriched pathways are closely related to 

tumor development, such as p53, HIF-1, PI3K and other 

signaling pathways (Figure 4C, 4D). Furthermore, we 

analyzed the correlation between EphA2 expression and 

the expression of common ferroptosis-related genes in 

colorectal cancer and found that EphA2 expression was 

significantly correlated with the expression of several 

ferroptosis-related genes (Figure 5A, 5B). These results 

 

 
 

Figure 2. EphA2 can undergo phase separation in cells. (A, B) Predictions of IDRs and NCPR of EphA2 using PONDR and CIDER 
database based on their amino acid positions and sequences. (C) Transfection of GFP-EphA2 in HEK293 cells and immunofluorescence 
detection of EphA2 puncta in the presence or absence of 1,6 hexanediol treatment. (D) Transfection of GFP-EphA2 in HEK293 cells and 
detection of EphA2 puncta by immunofluorescence 3D imaging. (E) Representative images of FRAP experiment of HEK293 cells that had 
been transfected with GFP-EphA2 expression vector. The red circle highlights the puncta undergoing targeted bleaching. (F) Quantification 
of FRAP fluorescence intensity data for GFP-EphA2 puncta. 
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suggest that EphA2 may influence the development of 

colorectal cancer through the regulation of ferroptosis. 

 

EphA2 is associated with immune cell infiltration 

 

Tumour immunotherapy, represented by immune 

checkpoint inhibitors, especially PD1/PD-L1, is a pro-

mising therapeutic approach that has been developed  

in recent years. It has shown significant efficacy in 

some patients with advanced colorectal cancer [45].  

To explore the relationship between EphA2 expression 

and immune cell infiltration in colorectal cancer, we 

analyzed the RNA-seq expression profile data of TCGA 

as well as clinically relevant information and found  

that EphA2 expression was significantly and positively 

correlated with macrophage, neutrophil and myeloid 

dendritic cell infiltration (Figure 6A, 6B). We further 

analyzed the correlation between EphA2 expression and 

immune checkpoint expression using TCGA expression 

profile data and found no significant correlation between 

EphA2 and common immune checkpoints such as 

CD274, CTLA4, TIGIT, PDCD1, etc. (Figure 6C). 

These results suggest that EphA2 may influence 

colorectal carcinogenesis and progression through the 

infiltration of some immune cells. 
 

DISCUSSION 
 

EphA2 belongs to the Eph receptor family, which  

is the largest family of receptor tyrosine kinases.  

Eph receptors can be classified into EphA and  

EphB types depending on their sequence homology,  

structure, affinity for the ligand to which they bind, and 

distribution. Humans express nine EphA receptors and 

five EphB receptors [46]. EphA2 is highly expressed  

in many tumours and is of prognostic importance. For 

example, EphA2 may promote the progression of 

squamous head and neck cancer and is expected to be a 

prognostic indicator [47]. In non-small cell lung cancer, 

EphA2 reduces progression-free survival and overall 

 

 
 

Figure 3. ALW can disrupt EphA2 phase separation condensates. (A) Immunofluorescence observation of the dynamics of GFP-

EphA2 condensates in living cells. The red arrow highlights the dynamic process of GFP-EphA2 condensates at different times. (B) Molecular 
docking showing the binding site of ALW to EphA2. (C) Transfection of GFP-EphA2 in HEK293 cells and FRAP experiment detection of EphA2 
puncta in the presence or absence of ALW treatment. (D) Quantification of FRAP fluorescence intensity data for GFP-EphA2 puncta. 
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survival of patients [48]. In gastric cancer, EphA2  

can promote tumor cell progression by activating the 

Wnt signaling pathway [9]. In this study, we found that 

EphA2 was abnormally highly expressed in colorectal 

cancer and that patients with high expression had a 

worse prognosis. In addition, we also found that EphA2 

can undergo phase separation and a positive correlation 

with the expression of ferroptosis-related genes and 

immune cell infiltration, but whether other members  

of the Eph receptor family have similar phenomena in 

colorectal cancer requires further evidence. 

 

The phase separation is involved in the regulation  

of cellular metabolism, signal transduction, gene 

expression and protein homeostasis. It is important  

for the maintenance of homeostasis in the organism. 

 

 
 

Figure 4. Biological functions of EphA2 in colorectal cancer samples. (A) Heat map showing differentially expressed genes in 

colorectal cancers with high and low expression of EphA2. (B) Venn diagram showing EphA2-regulated differentially expressed genes. (C, D) 
KEGG and GO analyses of EphA2-regulated differentially expressed genes in colorectal cancers patients. 
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The relationship between phase separation and  

cancer has recently attracted much attention [49–51]. 

In colorectal cancer, SENP1 inhibits RNF168 phase 

separation, which in turn promotes DNA damage 

repair and drug resistance in colorectal cancer [34]. 

NUP98 fusion oncoprotein is a driver of childhood 

leukaemia. Most NUP98 fusion proteins contain 

intrinsically disordered regions that are susceptible to 

liquid-liquid phase separation (LLPS) in vitro. Phase 

separation of NUP98 fusion oncoproteins is required 

to mediate leukemic transformation [52]. Phosphatidic 

acid-binding lncRNA SNHG9 promotes LATS1 liquid-

liquid phase separation and facilitates oncogenic YAP 

signaling [53]. In this study, we found that EphA2  

has a distinct internal disordered region and that 

EphA2 can form puncta on cell membranes, further 

demonstrating that these puncta are formed by LLPS, 

but further experiments are needed to prove whether 

EphA2 exerts a pro-cancer function through its phase 

separation properties. In addition, EphA2 acts as a 

transmembrane receptor that transmits a variety of 

extracellular signals into the cell. Whether EphA2 

phase-separated condensate can activate downstream 

signaling pathways by condensing other signaling 

molecules needs to be further explored. Most previous 

studies have focused on nuclear proteins such as 

transcription factors having phase separation [40, 54], 

and in our study the membrane receptor EphA2 was 

found to have phase separation. Recently there is also  

a growing number of other membrane molecules that  

can function by phase separation, such as DIAPH3 

condensates formed by liquid-liquid phase separation 

act as a regulatory hub for stress-induced actin 

cytoskeleton remodeling [55]. CD3ε, a component of 

TCR, can intrinsically form phase separation with Lck 

through ionic interactions. The condensate structure 

significantly promotes Lck-mediated CD3 phosphory-

lation to yield the amplification of TCR signaling [56]. 

 

Ferroptosis is a novel mode of cell death that has been 

shown to be involved in the development of many 

cancers and to increase the susceptibility of cancers  

to radiotherapy, providing a new theoretical basis for 

the prevention and treatment of cancer. For example,  

in hepatocellular carcinoma donafenib and GSK- 

J4 synergistically induce ferroptosis in tumor cells 

through upregulation of HMOX1 expression [57]. 

ASCL1 can promote progression of castration-resistant 

prostate cancer to neurosecretory prostate cancer by 

mediating ferroptosis resistance [58]. In gastric cancer 

cells, the HNF4A-BAP31-VDAC1 axis synchronously 

regulates tumor cell proliferation and ferroptosis [59]. 

 

 
 

Figure 5. EphA2 is associated with ferroptosis. (A) Heat map showing differential expression of ferroptosis-related genes in EphA2 

differentially expressed colorectal cancer patients. (B) Correlation of EphA2 expression with the expression of common ferroptosis-related 
genes. *stands for significance levels, * for p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 6. Correlation between EphA2 expression and various immune cells infiltration of colorectal cancer.  (A) Heat map 
showing the level of immune cell infiltration in EphA2 differentially expressed colorectal cancer patients. (B) Percentage abundance of 
tumour-infiltrating immune cells per sample. (C) Expression distribution of immune checkpoint of colorectal cancer samples with 
differential EphA2 expression. *stands for significance levels, * for p < 0.05, **p < 0.01. 
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The occurrence of ferroptosis is regulated by several 

genes, such as GPX4, CDKN1A, SLC1A5, and ACSL4, 

etc. In this study, we found that EphA2 expression 

showed significant correlation with several ferroptosis-

related genes, including ALOX15, ATL1, CARS1, 

HSPA5, SLC7A11 and SLC1A5, etc., [42], suggesting 

that EphA2 may influence tumour progression by 

regulating iron death in colorectal cancer. 

 

In recent years, the emergence of tumor immuno-

therapy has changed the traditional pattern of tumor 

treatment. It is one of the most promising research 

directions in the field of tumour therapy, and has been 

widely used as the fourth tumour treatment in clinical 

practice [60]. Tumour immunotherapy is mainly divided 

into immune checkpoint blockades (ICBs) and chimeric 

antigen receptor T cell immunotherapy. In this study, we 

found that EphA2 expression correlated with infiltra- 

tion of a variety of immune cells, such as neutrophils, 

myeloid dendritic cells and macrophage cells, but EphA2 

expression did not correlate significantly with common 

immune checkpoints such as PDCD1, CTLA4, and 

CD274, etc., These results suggest that EphA2 may 

regulate the development of colorectal cancer by 

influencing the infiltration of immune cells. 
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