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INTRODUCTION 
 

Bladder cancer is the most common malignancy of the 

urinary system and one of the most common cancers 

worldwide [1]. Most bladder cancers are urothelial 

cancers, which are divided into two subtypes depending 

on whether the tumor invades the muscle layer of the 

bladder: muscle-invasive bladder cancer (MIBC) and 
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ABSTRACT 
 

Background: Angiogenesis is a major promotor of tumor progression and metastasis. Nevertheless, it is 
undetermined how angiogenesis-related genes (ARGs) influence bladder cancer. 
Methods: The profiles of bladder cancer gene expression were collected from the TCGA-BLCA cohort. The LASSO 
regression analysis was used to build an angiogenesis-related signature (ARG_score) with the prognostic ARGs. 
Verification analyses were conducted across the GSE48075 dataset to demonstrate the robustness of the signature. 
Differences between the two risk groups based on clinical outcomes, immune landscape, mutation status, 
chemotherapeutic effectiveness for anticancer drugs, and immunotherapy efficacy were analyzed. A nomogram was 
developed to improve the clinical efficacy of this predictive tool. The expression levels of model genes in normal 
bladder epithelial cell lines (SV-HUC-1) and bladder cancer cell lines (T24 and 5637) were detected by qRT-PCR 
assay. 
Results: Four angiogenesis-associated gene signature was constructed based on the LASSO regression 
algorithm. The signature showed independent risk factors of overall survival for bladder cancer, validated using 
two external survival datasets. Additionally, we built a prognostic nomogram to improve the practicality of the 
ARG_score. High-risk individuals showed stronger immunocyte infiltration, immune-related functions, elevated 
expression of immune checkpoints, reduced TIDE score, and higher combined IPS-PD-1 and IPS-CTLA4 scores, 
suggesting a heightened responsiveness to immune checkpoint inhibitors. Furthermore, patients with low and 
high risk showed distinct responsiveness to anticancer drugs. The expression levels of 5 model genes (COL5A2, 
JAG1, MSX1, OLR1, and STC) were significantly increased in bladder cancer cell lines (T24 and 5637) compared 
with the normal bladder epithelial cell line SV-HUC-1. 
Conclusions: The model constructed based on ARGs may have wide application in predicting outcomes and 
therapeutic responses. 
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non-muscle invasive bladder cancer (NMIBC) [2]. 

Although metastasis and mortality from NMIBC are 

limited, the local recurrence rate is very high, with about 

10-15% of patients progressing to MIBC [3]. Compared 

to NMIBC, MIBC is more aggressive. Clinical practice 

is challenged by the diversity of treatment options and 

the genetic heterogeneity observed among patients with 

bladder cancer. Traditional evaluation methods, such as 

TNM staging, are inherently subjective and in-adequate 

to predict prognosis and therapeutic response. Therefore, 

the development of reliable risk models for bladder 

cancer to distinguish patients at different risks is critical 

to help predict prognosis and personalize treatment. 

 

Angiogenesis is a dynamic process in which endothelial 

cells interact with the extracellular environment, which is 

critical for vascular development and repair of damaged 

blood vessels. However, unlike normal vessels, patho-

logical vessels are immature, which can promote tumor 

progression, invasion, and distant metastasis [4, 5]. 

Therefore, pathological angiogenesis is considered to be 

one of the characteristics of tumors [6]. Increasing evi-

dence suggests that angiogenesis-related genes (ARGs) 

can induce angiogenesis and promote the progression of 

tumors by enhancing the formation of tumor-related 

new blood vessels. Several angiogenesis inhibitors are 

approved for bladder cancer [7, 8]. Overexpression of 

some angiogenesis factors was associated with bladder 

cancer metastasis and poor prognoses, such as hypoxia-

inducible Factor-1α (HIF-1α), vascular endothelial 

growth factor A (VEGFA), and fibroblast growth factor 

(FGF) [9–11]. Nevertheless, the primary focus of these 

studies has been on examining the influence of specific 

ARG on the advancement and prognosis of bladder 

cancer. Systematic studies on the relationship between 

angiogenesis-related gene sets and bladder cancer have 

not been reported. 

 

MATERIALS AND METHODS 
 

Datasets collection 

 

RNA sequencing data of 412 tumors and 19  

normal tissues, along with clinical data on bladder 

cancer were downloaded from the TCGA database. To 

select data for verification, we obtained two Gene 

Expression Omnibus (GSE48075 and GSE13507) 

datasets containing 73 and 165 samples with complete 

clinical information, respectively. We performed data 

normalization to eliminate batch effects after exclu-

ding patients who were missing crucial clinical 

information like overall survival (OS) and TNM stage. 

The ARG set (hallmark-angiogenesis) was obtained 
from the Molecular Signatures Database and includes 

36 genes that are upregulated during tumorigenic 

angiogenesis [12]. 

Establishment and verification of ARG signature 

 

Prognosis-related genes were identified by combining 

survival data with the ARGs. The significance levels 

were established as less than 0.05, and the TCGA  

set underwent univariate Cox regression analysis. 

Moreover, the TCGA dataset underwent LASSO Cox 

regression analysis to build a predictive risk score 

model based on ARGs. The equation for calculating the 

risk score is as follows: 

 

sA iRG n_sc (Gene Expres o gene coefficient)ore =   

 
Using the aforementioned equation, the ARG_score 

for each patient with bladder cancer in both  

the TCGA and GEO datasets was calculated. 

Subsequently, the samples were divided into low- and 

high-risk categories according to the median value. 

Principal component analysis (PCA) and t-distributed  

stochastic neighbor embedding (t-SNE) were performed 

to separate low- and high-risk bladder cancer using 

data from both training and validation sets. Prognostic 

differences between these two groups were analyzed 

by plotting Kaplan-Meier curves. The ARG_score was 

evaluated using receiver operating characteristic 

(ROC) analysis to predict the 1-, 3-, and 5-year 

overall survival (OS) in the TCGA and GEO sets. 

 
Formation and validation of the nomogram 

 
Univariate and multivariate Cox regression analyses  

in the TCGA set were used to identify independent 

predictive abilities. The correlation of ARG_score  

and clinicopathologic variables was analyzed with  

the “limma” package, and the OS of subgroups  

was determined by Kaplan-Meier analysis using 

“survminer” package. The “rms” and “regplot”  

R packages were used to construct a nomogram 

comprising ARG_score and clinical traits [13]. 

Predictive probability was evaluated using the receiver 

operating characteristic (ROC) curves and calibration 

plots. 

 
Estimation of the proportion of immune infiltrating 

cells 

 
The “ssGSEA” package in R was used to analyze  

the differences in the ratio of tumor-infiltrating 

immune cells (TIICs) and immune-related functions 

between the low- and high-risk groups. Then, TME 

scores (immune score, stromal score, and estimated 

score) of the two groups were compared with the 
“ESTIMATE” R package. Additionally, the correlation 

between ARGs in model and TIICs was evaluated  

by CIBERSORT. 
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Immunotherapy response, mutation landscape, and 

drug sensitivity 

 

Biomarkers predicting immunotherapy responses in-

volved in our study included the Immunophenotypescore 

(IPS), Tumor Immune Dysfunction and Exclusion 

(TIDE) score, and tumor mutational burden (TMB) 

status. Immunophenoscore (IPS) score was used to 

predict responses of immune checkpoint inhibitors (ICIs) 

(https://www.tcia.at/home). The antitumor immune 

escape possibility was assessed by the TIDE score 

(http://tide.dfci.harvard.edu/). Additionally, differences 

in the expression of immunological checkpoints in 

different risk groups were compared. 

 

To examine the TMB of patients, we acquired the 

mutation information from the TCGA repository. The 

variation distribution of genes between two risk groups 

was illustrated using a waterfall diagram generated  

by the R package “maftools”. Obtaining correlations 

between patient risk scores and tumor mutation 

frequency in target genes was achieved using the R 

package “ggpubr”. Survival curves for OS prediction 

combined with TMB and risk scores were analyzed. 

Drug sensitivity in bladder cancer based on the GDSC 

database (https://www.cancerrxgene.org/) was evaluated 

using the “oncoPredict” package [14], including 198 

types of drugs. The inhibitory concentration (IC50)  

was evaluated to determine drug sensitivity. 

 

Biological function and pathway enrichment analysis 

 

The “limma” R package was employed to screen the 

differentially expressed genes (DEGs) between two 

groups based on significance level criteria (adjusted  

p < 0.05 and |log2FC| > 1). The GO enrichment analysis 

was conducted using the “clusterProfiler” R package. 

Additionally, GSEA was used to determine differential 

functions in two risk groups downloaded from MSigDB 

database “c2.cp.kegg.v7.4.symbols.gmt” as a reference 

gene set. 

 

Cell culture and RT-qPCR 

 

The human normal bladder epithelial cell line  

(SV-HUC-1) and bladder cancer cell lines (T24 and 

5637) were purchased cells from the Chinese Academy 

of Sciences Cell Bank (Shanghai, China) and were 

cultured in RPMI 1640 or Ham’s F-12K medium 

(Gibco, USA) supplemented with 10% fetal bovine 

serum (Gibco, USA) at 37° C and in a 5% CO2 

atmosphere at 37° C. 

 
Following the instructions provided by the manufacturer, 

we extracted total RNA from human bladder cancer 

cells by RNAfast200 total RNA rapid extraction kit 

(Feijie, China). To assess the RNA levels in the 

samples, the NanoDrop2000 instrument from IMPLEN 

in Germany was employed. Next, the qRT-PCR reaction 

was conducted by a ReverTra Ace qPCR RT Kit 

(Toyobo, Japan) and SYBR High-Sensitivity qPCR 

Supermix (Novoprotein, China) in 7900HT Fast Real-

Time PCR System (ABI, USA). The 2-ΔΔCq method 

was utilized to determine the relative expression  

levels, with GAPDH serving as the internal reference 

gene. The trials were conducted thrice in triplicate. 

Primer sequences are in Supplementary Table 1. 

 

Statistical analysis 

 

Data were analyzed by R software version 4.2.0.  

To examine disparities between two and multiple 

groups, the Wilcoxon and Kruskal-Wallis tests were 

utilized, respectively. Spearman correlation analysis 

was performed to assess the relationships between 

samples and gene expression. For survival analysis, the 

log-rank test was used to determine survival differences. 

Two-sided p-values < 0.05 were considered statistically 

significant. 

 

Data availability statement 

 

The data used to support the results of this study can be 

obtained from the Gene Expression Omnibus (GEO) 

and Cancer Genome Atlas (TCGA) database. 

 

RESULTS 
 

Establishment and verification of a risk scoring 

model 

 

The expression levels of 36 ARGs were matched with 

survival information to obtain the TCGA training set  

(n = 401). Univariate Cox regression analysis was 

performed, wherein 12 genes were selected from the 36 

ARGs associated with patient prognosis (Figure 1A). 

Using the LASSO algorithm, we developed a predictive 

model for the risk score of ARG, which consisted  

of 5 genes: COL5A2, JAG1, MSX1, OLR1, and  

STC1 (Figure 1B, 1C). The ARG_score was calculated 

with the following formula: ARG_score = expression 

(COL5A2) × 0.000826 + expression (JAG1) × 0.001819 

+ expression (MSX1) × 0.001473 + expression (OLR1) 

× 0.000833 + expression (STC1) × 0.000714. Using  

the median risk of the TCGA set as the threshold,  

we divided the patients into low-risk and high-risk 

subgroups. To validate this model, we calculated  

the corresponding risk score for each patient in the 

GSE48075 set via the same formula. Patients were 

assigned into high- and low-risk subgroups based on the 

same cut-off value as the TCGA set. PCA and t-SNE 

analyses showed a good separation of two risk patients 

https://www.tcia.at/home
http://tide.dfci.harvard.edu/
https://www.cancerrxgene.org/
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(Figure 1D, 1E). The distribution of patients in  

the various groups was shown in Figures 1F, 1G. 

Furthermore, heat maps of the differential expression 

of the 5 essential genes in the two risk groups show  

a general agreement (Figure 1H, 1I). Kaplan-Meier 

curve demonstrated that low-risk patients had a 

favorable prognosis (Figure 1J, 1K). The ROC  

curves for the prediction of 1, 3, and 5-year OS in the 

TCGA and GEO sets are shown in Supplementary 

Figure 2. Similarly, patients in the GSE13507 dataset 

were also divided into two high- and low-risk 

subgroups based on the same cut-off value as the 

TCGA set. PCA and t-SNE analyses showed a good 

separation of two risk patients (Supplementary Figure 

3A, 3B). The distribution of patients in the various 

groups was shown in Supplementary Figure 3C. The 

expression patterns of model genes were depicted by  

a heat map (Supplementary Figure 3D). According to 

the Kaplan-Meier analysis, individuals classified as 

low-risk experienced a longer lifespan compared to 

other patients (Supplementary Figure 3E). The ROC 

curve showed the specificity and sensitivity and 

specificity of the risk model in predicting the 

prognosis of patients, and the AUCs for the 1-, 3-, and 

5-year OS were 0.721, 0.714, and 0.701, respectively 

(Supplementary Figure 3F). 

 

 
 

Figure 1. Development and verification of an angiogenesis-related risk model. (A) Univariate analysis of genes related to 

angiogenesis. (B) LASSO coefficient spectrum of 12 angiogenesis. (C) Cross-validation for tuning parameter selection in the LASSO regression. 
(D, E) PCA and t-SNE analyses based on risk scores in the TCGA cohort and GEO cohort. (F, G) The distribution of ARG_score and survival 
status of bladder cancer patients with increased ARG_score. (H, I) Heatmap for the expression of six crucial genes in the TCGA cohort and 
GEO cohort. (J, K) Survival analysis of low- and high-risk bladder cancer in TCGA cohort and GEO cohort. 
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Development and evaluation of nomogram 

 

While the signature had a stable capacity to predict 

survival of low- and high-risk bladder cancer, it  

could only divide patients into these two groups, with 

low-risk patients having better prognoses. However, 

doctors need a precise and comprehensive tool to 

predict the survival of each patient. To address this, we 

developed an intuitive visual tool called a robust 

nomogram. First, univariate and multivariate Cox 

regression analyses were performed and we found that 

ARG_score could independently predict the OS of 

patients with bladder cancer (P < 0.001, Figure 2A, 2B). 

In order to assess the risk scores in the subcategories, 

we additionally performed a survival analysis on  

the subgroups. Individuals were categorized based on 

age (> 65 or ≤ 65 years), sex (female or male), and 

TNM stage (I-II or III-IV). As shown in Figure 2C– 

2H, observations of low-risk outlived all subgroups 

compared to the high-risk. Furthermore, individuals 

were categorized into subcategories based on age, sex, 

and TNM stage. Patients with stage III-IV may have 

higher risk scores (Figure 2I). Subsequently, we built a 

prognostic nomogram by integrating ARG_score and 

the clinical characteristics (Figure 2J). At 1, 3, and 5 

years, the AUC value of the ROC curve reaches 0.727, 

0.723, and 0.761, respectively (Figure 2K). Figure 2L 

displayed a robust correlation between forecasts and 

measurements in the calibration curve. 

 

Estimation of the proportion of immune infiltrating 

cells 

 

In order to examine the variations in immune cells and 

immune function, we conducted a comparative analysis 

of the immunological disparities between the high-  

and low-risk groups. Using the signature genes of 28 

immune cells, we determined the proportion of immune 

cells that had infiltrated using ssGSEA. Significant 

differences were observed among all TIICs in the two 

 

 
 

Figure 2. Development and evaluation of nomogram. (A, B) Univariate and multivariate analyses of ARG_score and clinical traits in 
TCGA cohort. (C–H) Subgroup survival analysis based on age ≤ 65, age > 65 years, female, male, stage I-II, and stage III-IV. (I) The relationship 
of risk score and TNM stage. (J) Nomogram of angiogenesis-related risk score and clinical characteristics. (K) ROC curve analysis for risk score. 
(L) Calibration plot for evaluating the predictive ability of the nomogram at 1-, 3-, and 5-years. 
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risk groups (Figure 3A). At the same time, most of  

the immune functional activities in the low-risk group 

were lower than those in high-risk group (P < 0.05; 

Figure 3B). Furthermore, the 5 ARGs of the model  

were also correlated with immune cells (Figure 3C). 

Subsequently, we found that the stromal score, immune 

score, and ESTIMATE scores of the high-risk group 

tended to increase significantly compared to the low-

risk group (Figure 3D). 

 

Immunotherapy response, mutation landscape, and 

drug sensitivity 

 

To investigate whether the ARG_score could predict 

immunotherapy response, we performed a study on the 

association between immune checkpoints and the 

ARG_score. Results showed that most immune 

checkpoints were positively correlated with the 

ARG_score, including the PDCD1 (PD-1) and CTLA4 

genes (all P < 0.001, Figure 4A). TIDE scores were 

calculated for the TCGA cohort, and patients with higher 

scores showed a higher likelihood of tumor immune 

escape and thus a lower response rate to ICI therapy.  

Our results indicated that TIDE scores decreased with a 

risk score and were significantly different in the two 

groups (Figure 4B). Hence, patients with higher risk 

scores tended to show higher immunotherapy efficacy. 

Simultaneously, in the CTLA4+ PD1+ subgroup, the 

high-risk group showed significantly greater benefits 

from immunotherapy (Figure 4C). 

 

 
 

Figure 3. Relationship between risk score and human immunity. (A) The ratio of TIICs in two risk groups. (B) Immune-related function 

in two risk groups. (C) Correlation between the 5 ARGs of the model and immune infiltrating cells. (D) Differences of TME scores in low- and 
high-risk patients. 



www.aging-us.com 13124 AGING 

 

 
 

Figure 4. Immunotherapy response in low- and high-risk bladder cancer. (A) Box plot of the relationship between risk score and 

immune checkpoints. (B) TIDE score in the low- and high-risk bladder cancer. (C) IPS of low- and high-risk groups in CTLA4+ PD1+ subgroup. 
(D, E) The genomic mutation rate in the high- and low-risk groups. (F) Kaplan-Meier survival analysis of OS in H-TMB and L-TMB groups.  
(G) Survival analysis of TMB combined with the risk score. 



www.aging-us.com 13125 AGING 

To investigate the somatic mutation in two risk groups, 

we assessed gene mutation and TMB. As shown in 

Figure 4D, 4E, high-risk groups had a greater rate of 

genomic mutations than low-risk groups (94.44% vs. 

92.93%). Among them, KDM6A was remarkably 

decreased from the low-risk group to the high-risk group 

(29% vs. 16%), while TP53 was remarkably increased 

from the low-risk group to the high-risk group (44% vs. 

52%). Then, we investigated the prognostic significance 

of TMB. Using the median TMB value, patients were 

allocated to the two TMB groups. The H-TMB group 

had a higher prognosis than the L-TMB group (Figure 

4F). Furthermore, patients discriminated by TMB,  

and risk scores had distinct survival categorizations. 

High-risk patients with L-TMB showed the worst OS 

compared to others (p < 0.001, Figure 4G). 

 

Next, we screened the sensitivities of common drugs 

based on the ARG signature. The predicted IC50 values 

of chemotherapeutics such as 5-Fluorouracil, cisplatin, 

docetaxel, alisertib, and alpelisib in the high ARG-score 

group were lower (Supplementary Figure 1A–1E), 

while the IC50 values of ipatasertib, leflunomide, and 

Wee1 Inhibitor were lower in the low ARG-score group 

(Supplementary Figure 1F–1H). 

 

Putative biological function associated ARG signature 

 

We performed differential expression analysis and 

identified 3326 DEGs. Figure 5A displayed the 

variation in gene expression at a specific threshold on 

the volcano plot. To explore the biological processes 

related to the ARGs, we conducted a series of functional 

enrichment analyses, including GO, KEGG, and  

GSEA analyses. According to the results, “external 

encapsulating structure organization” in BP analysis; 

“collagen-containing extracellular matrix” in CC 

analysis; as well as “signaling receptor activator 

activity” in the MF analysis were the top three 

functional annotations among these GO analyses 

(Figure 5B). DEGs were primarily enriched in the 

PI3K-Akt, MAPK, and JAK-STAT signaling pathways, 

 

 
 

Figure 5. Putative biological function associated ARG signature. (A) Volcano plot of DEGs based on the risk score. (B) GO enrichment 
analysis of DEGs. (C) KEGG pathway enrichment analysis of DEGs. (D, E) GSEA between high- and low-risk groups. 
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as illustrated in Figure 5C. The cancer-related  

pathways are interconnected, suggesting that there are 

notable disparities in cancer-related pathways between 

patients in high and low-risk groups. Furthermore, 

pathways like “focal adhesion”, “cytokine cytokine 

receptor interaction”, and “ECM receptor interaction” 

were highly enriched in the high-risk group, as well  

as “drug metabolism cytochrome P450” or “PPAR 

signaling pathway” was more related to the low-risk 

group (Figure 5D, 5E). 

 

In vitro validation of 5 gene expressions 

 

We investigated the expression levels of 5 model genes 

(COL5A2, JAG1, MSX1, OLR1, and STC) in normal 

bladder epithelial cell lines (SV-HUC-1) and bladder 

cancer cell lines (T24 and 5637). As shown in Figure  

6 the levels of 5 genes were significantly increased in 

bladder cancer cell lines (T24 and 5637) compared with 

SV-HUC-1. 
 

DISCUSSION 
 

Bladder cancer is a morphologically and clinically 

heterogeneous disease [15]. Although histological 

classification and tumor staging guide treatment 

options, responses to treatment in patients with bladder 

cancer vary greatly due to the highly heterogeneous 

nature of the tumor. The heterogeneity of response  

to treatment highlights the need to develop reliable 

biomarkers and models to stratify patients for better 

treatment outcomes. Angiogenesis is the process by 

which blood vessels develop from an existing network 

of blood vessels to establish a blood supply to meet 

nutrient and oxygen requirements and perform other 

metabolic functions [16]. In the process of tumor 

growth, the continuous production of angiogenic-

inducing factors and the corresponding decrease of anti-

angiogenesis factors lead to the increase of endothelial 

cell activity [17]. Inhibition of angiogenesis can 

remarkably prevent tumor progression. It has become a 

marker of cancer [5], and targeting angiogenesis has 

achieved success in several types of cancer [18–20]. 

However, these drugs have not shown significant 

antitumor efficacy [21]. Angiogenesis is a complex 

process triggered by multiple pro- or antiangiogenic 

cytokines. It is inefficient to construct prediction models 

based on single genes or factors. On the contrary, 

integrated analysis of multigene can better reflect the 

complex interactions of various genes affecting angio-

genesis in tumor pathology. Therefore, a more reliable 

and accurate model is constructed by combining 

multiple genes to provide individualized prognosis and 

precision medical treatment for bladder cancer. 

 

 
 

Figure 6. qRT-PCR analysis of COL5A2, JAG1, MSX1, OLR1, and STC mRNA levels in the human normal bladder epithelial cell 
line (SV-HUC-1) and bladder cancer cell lines (T24 and 5637). 
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This research extracted bladder cancer information from 

two databases. The TCGA-BLCA cohort served as the 

training set, while the two GEO cohorts were utilized as 

the validation sets. To construct a prognostic signature 

for predicting patient OS and perform a patient 

classification analysis, we incorporated 36 angiogenesis-

related genes obtained from the Hallmark_Angiogenesis 

gene set. The signature exhibited strong performance  

in predicting OS in both TCGA and GEO datasets. 

Furthermore, our signature showed a strong independent 

prognostic ability. In order to facilitate the application  

of ARG_score in clinical work, we combined the 

ARG_score and three important clinical indicators  

to construct a simpler and more flexible individual 

prognosis prediction tool for patients with bladder cancer. 

The nomogram was confirmed with high accuracy and 

wide applicability. The use of the signature allows for 

more precise forecasts and categorization of patients’ 

prognoses, proving invaluable in clinical practice and 

addressing the limitation of traditional classification in 

distinguishing patients sharing the same AJCC stage. 

 

The ARG signature consists of five risk genes (STC1, 

COL5A2, JAG1, MSX1, OLR1). STC1 is a secreted 

glycoprotein hormone that exists in almost all tissues and 

is mainly used as a paracrine/autocrine factor to regulate 

various biological functions [22]. Increasing evidence 

suggests that STC1 is highly expressed in breast cancer, 

ovarian cancer, colorectal cancer, and other cancers  

[23–25]. STC1 expression was increased under hypoxia  

and STC1 was activated by HIF1 in cancer cells [26].  

In cancer, STC1 may promote metastasis through  

new angiogenesis. VEGF is an important angiogenic 

factor that can stimulate the proliferation and migration 

of endothelial cells [27]. Mounting evidence has 

confirmed that STC1 promotes mRNA and protein levels 

of VEGF, eNOS, and VEGFR2, and stimulates the 

VEGF signaling pathway [28, 29]. Jagged1 (JAG1), one 

of the Notch ligands, is upregulated in multiple cancers 

and is correlated with a worse prognosis [30–32]. The 

JAG1/Notch signaling pathway controls carcinogenic 

processes by activating different oncogenic factors, 

including angiogenesis [33]. In order to inhibit the severe 

toxicity of pan-Notch inhibitors, JAG1 is receiving 

increasing attention as a cancer therapeutic target. As  

a member of the collagen family, V-type α2 collagen 

(COL5A2) affects tumor angiogenesis and metastasis 

[34, 35]. COL5A2 overexpression has been shown  

to be correlated with a worse prognosis in multiple 

malignancies [36–38]. Numerous studies suggest that 

overexpression of COL5A2 will promote angiogenesis 

and the expression of related cytokines, such as P53 and 

VEGF [35]. Msh Homeobox 1 (MSX1), a transcriptional 
repressor, has been shown to have an inhibitory effect on 

a variety of malignancies [39–41]. OLR1, a key receptor 

for ox-LDL, has been reported to be upregulated in 

multiple cancers and promotes tumorigenesis and cancer 

metastasis through different signaling pathways [42–44]. 

 

TME plays a crucial role in the pathogenesis of  

bladder cancer. Using the ssGSEA algorithms, most  

of the TIICs and immune functional activities in the 

low-risk group were lower than those in the high-risk 

group. Tumors in the low-risk group had lower TME 

scores, suggesting a typical immunosuppressive TIME. 

Furthermore, the ARG_score was positively correlated 

with immune checkpoint, and thus we also investigated 

its ability in immunotherapy prediction. Our results 

indicated that TIDE scores were lower in the high- 

risk group than in the low-risk group. We further 

investigated IPS assessment and found high-risk 

patients were more responsive to anti-PDL1 and anti-

CTLA4 combined treatment. Taken together, ARG 

signature could serve as an indicator to predict response 

to immunotherapy in patients with bladder cancer. TMB 

was linked to immunotherapy response and clinical 

outcomes [45]. We retrieved somatic mutation profiles 

and patients were grouped according to TMB levels to 

explore the prognostic effect of the risk score associated 

with TMB. Finally, patients with high TMB outlived 

those with low TMB. The Kaplan-Meier curves further 

demonstrated that high-risk patients with low TMB had 

the worst OS compared to others. Our work identified  

a consolidated forecasting signature including TMB  

and the ARG signature may provide better survival 

prediction, which further guides immunotherapy. 

 

Our GO enrichment analysis indicates that angio-

genesis has a significant impact on both the extra-

cellular matrix (ECM), such as “external encapsulating  

structure organization” and “collagen-containing extra- 

cellular matrix”. The analysis of KEGG revealed the 

prevalence of pathways related to cancer, suggesting 

that angiogenesis plays a vital role in the regulation of 

tumor progression. Furthermore, the results of GSEA 

enrichment analysis indicated that individuals with high-

risk scores exhibit distinct molecular characteristics 

associated with the progression of bladder cancer. These 

results suggest that patients with high-risk scores may 

experience heightened tumor cell growth and spread. 

 

There are still shortcomings in this study. Firstly, 

although our analysis was based on multi-source 

datasets, all samples were collected retrospectively  

and thus should be validated against a prospective 

cohort. Furthermore, our study lacks data on patients 

undergoing immunotherapy, necessitating future external 

validation through prospective and extensive clinical 

trials to evaluate the model’s predictive capability. 
Lastly, in vivo and in vitro research is needed to 

investigate the biological functions of model genes in 

bladder cancer. 
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CONCLUSIONS 
 

The ARG signature has effective and stable efficacy  

in prognostic prediction and different therapeutic 

responses, which is an effective and convenient tool  

for the personalized treatment of bladder patients. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Prediction of sensitivity to common chemotherapy drugs in patients with bladder cancer by ARG 
signature. Boxplots of scaled IC50 values of (A) 5-Fluorouracil, (B) cisplatin, (C) docetaxel, (D) alisertib, (E) alpelisib, (F) ipatasertib,  
(G) leflunomide, (H) Wee1 Inhibitor. 
 

 
 

Supplementary Figure 2. The ROC curves for the prediction of 1, 3, and 5-year OS in the TCGA (A) and GEO sets (B). 
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Supplementary Figure 3. Verification of an angiogenesis-related risk model in the GSE13507 set. (A, B) PCA and t-SNE analyses 

based on risk scores. (C) The distribution of ARG_score and survival status of bladder cancer patients with increased ARG_score. (D) Heatmap 
for the expression of six crucial genes. (E) The KM curve for the ARG_score in predicting the OS of bladder cancer patients. (F) ROC curve to 
show the sensitivity and specificity of the prognosis model. 
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Supplementary Table 
 

 

Supplementary Table 1. The primer sequences for qRT-PCR. 

Gene Primer sequence (5’-3’) 

H-COL5A2-F CGCTTATGGAGACCACCAAT 

H-COL5A2-R TCATTTGCCCCTTTGAGAAC 

H-JAG1- F GACTCATCAGCCGTGTCTCA 

H-JAG1-R TGGGGAACACTCACACTCAA 

H-MSX1- F AAGTTCCGCCAGAAGCAGT 

H-MSX1-R GCCATCTTCAGCTTCTCCAG 

H-OLR1- F CCCAGGTGTCTGACCTCCTA 

H-OLR1-R CCGAGCAAGGGTTTCTATCA 

H-STC- F TCAGCTGAAGTGGTTCGTTG 

H-STC-R GACGAATGCTTTTCCCTGAG 

 


