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INTRODUCTION 
 

Ischemic stroke (IS) remains one of the leading causes 

of death and long-term disability in patients worldwide, 

which brings tremendous treatment difficulties and 

financial burdens on current healthcare systems [1–3]. 

Despite the development of many early diagnostic tools 

and treatment methods to improve neurological 
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ABSTRACT 
 

Ischemic stroke (IS) is a prominent type of cerebrovascular disease leading to death and disability in an aging 
society and is closely related to oxidative stress. Gene expression profiling (GSE222551) was derived from Gene 
Expression Omnibus (GEO), and 1934 oxidative stress (OS) genes were obtained from the GeneCards database. 
Subsequently, we identified 149 differentially expressed genes related to OS (DEOSGs). Finally, PTGS2, FOS, and 
RYR1 were identified as diagnostic markers of IS. Moreover, GSE16561 was used to validate the DEOSGs. Two 
diagnostic genes (PTGS2 and FOS) were significantly highly expressed, while RYR1 was significantly lowly 
expressed in the IS group. Remarkably, immune infiltration characteristics of these three genes were analyzed, 
and we found that PTGS2, FOS, and RYR1 were mainly correlated with Mast cells activated, Neutrophils, and 
Plasma cells, respectively. Next, we intersected three DEOSGs with the ferroptosis gene set, the findings 
revealed that only PTGS2 was a differentially expressed gene of ferroptosis. High PTGS2 expression levels in the 
infarcted cortex of middle cerebral artery occlusion (MCAO) rats were confirmed by immunofluorescence (IF), 
western blotting (WB), and Immunohistochemistry (IHC). Inhibition of PTGS2 clearly improved the neurological 
outcome of rats by decreasing infarct volume, neurological problems, and modified neurological severity scores 
following IS compared with the controls. The protective effect of silencing PTGS2 may be related to anti-
oxidative stress and ferroptosis. In conclusion, this work may provide a new perspective for the research of IS, 
and further research based on PTGS2 may be a breakthrough. 
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outcomes for IS in recent years, the treatment outcome 

of patients is still unstable. 

 

The occurrence of IS can induce a battery of 

biochemical or cellular responses, among which 

excessive reactive oxygen species (ROS) are typically 

performance [4–6]. Studies have demonstrated that 

oxidative stress (OS) will occur when the inherent 

antioxidant system cannot fully neutralize ROS and 

continues to maintain the endogenous redox balance. 

Once OS occurs, ROS can lead to massive cytotoxicity 

through oxidative damage of lipids and nucleic acids, 

ultimately causing scathing consequences to important 

structures and functions of brain tissue [7–10]. 

Excessive generation of reactive oxygen species (ROS) 

in the brain, triggers an overwhelming burden of ROS. 

This, in turn, leads to apoptosis in endothelial cells, 

modifications in the expression and/or assembly of 

occludin, ZO-1, and claudin-5, resulting in increased 

permeability of the blood-brain barrier (BBB) [11–13]. 

 

In our current work, we identified the molecular 

markers of OS, and revealed their subtle physiological 

functions using the machine learning algorithm. 

Moreover, with the experimental validation, inhibition 

of PTGS2 may alleviate the cerebral ischemic damage 

partly by anti-oxidative stress and ferroptosis. PTGS2, 

also known as prostaglandin endoperoxide synthase 2, 

is a key rate-limiting enzyme in prostaglandin bio-

synthesis [14]. Previous studies have indicated the 

involvement of PTGS2 in the regulation of angiogenesis 

in various cancer and tumor-related diseases. 

Furthermore, abnormal upregulation of PTGS2 has been 

observed in patients with IS [15]. Our findings would 

provide a deeper valuable reference for predicting 

biomarkers and the diagnosis regimens of IS. 

 

METHODS 
 

Data collection and processing 

 

Gene expression profiling in this work (GSE22255; 

GSE16561) was downloaded from the NCBI-GEO 

database (http://www.ncbi.nlm.nih.gov/geo). GSE22255 

included 20 IS patients and 20 age- and sex-matched 

controls using the GPL570 platform. The age range of 

the patients included was ≥18 and ≤75 years old [16]. 

Controls had no family history of stroke and were 

genetically unrelated to the included IS patients. 

GSE16561 included 39 IS patients and 24 controls 

using the GPL6883 platform. The patients’ age ranged 

from ≥18 to ≤90 years old [17]. Patients were diagnosed 

with IS on MRI, and controls were non-stroke 

neurologically healthy. The files were quantile-

normalized, and transformed after merging. The 

analysis of differentially expressed genes was executed 

by the “limma” package with the criteria of the 

adjusted P-value <0.05. The GeneCards database 

(https://www.genecards.org/) was searched using the 

keyword “oxidative stress” and retrieved 10,022 OS 

related gene symbols. Then, we set the relevance score 

≥4.0 as the cutoff value and finally obtained 1934 OS-

related genes (Supplementary Table 1). Finally, we 

identified 149 differentially expressed genes of 

oxidative stress (DEOSGs) via the Venn diagram online 

tool. The workflow chart is shown in Figure 1. 

 

KEGG and GO enrichment analyses 

 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses 

[18] were conducted by R package “clusterProfiler” 

[19] for the target DEOSGs’ function annotating and 

pathway predicting. Only terms with adjusted. P < 0.05 

was considered statistically significant. 

 

Validation of the specific DEOSGs in the IS 

 

The least absolute shrinkage and selection operator 

(LASSO) logistic regression [20] with the “glmnet” 

package, RandomForest with “random Forest” package 

and the support vector machine-recursive feature 

elimination (SVM-RFE) [21] with the “e1071” package 

were applied to screen the specific DEOSGs. The data 

obtained by the three machine algorithms were analyzed 

and presented by Venn diagram. The intersection of 

DEOSGs owned highly important function and would 

be used in subsequent research. 

 

The ROC curve and expression analysis 

 

In the GSE22255 dataset, we executed receiver 

operating characteristic (ROC) (“pROC” package) 

curve analysis on each specific DEOSGs to evaluate 

their accuracy. Expression levels of specific DEOSGs in 

GSE22255 were displayed in the color boxplots 

generated by the “ggplot2”. And GSE16561 was the 

verification group. 

 

GSEA analysis 

 

The GSEA was applied to investigate the function of 

the diagnostic DEOSGs. P < 0.05 was used as the 

criterion for significant enrichment. 

 

Experimental animals and ethics statement 

 

In this study, healthy adult male Sprague-Dawley (SD) 

rats weighing between 220–250 g were provided by 
Experimental Animal Center in Southern Medical 

University, Guangzhou, China. All experimental 

methods were conducted in agreement with the National 

http://www.ncbi.nlm.nih.gov/geo
https://www.genecards.org/
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Institutes of Health’s Guide for the Care and Use of 

Laboratory Animals and endorsed by the Institutional 

Animal Care and Use Committee of Jinan University. 

This study was approved by the Ethics committee of 

Jinan University. 

 

Construction of middle cerebral artery occlusion 

and reperfusion (MCAO/R) model 

 

Transient or permanent middle cerebral artery occlusion 

(MCAO) is one of the closest models to simulate human 

ischemic stroke [22]. This model was selected for 

subsequent studies. In our study, after the rats were 

anesthetized, the common carotid artery and the external 

carotid artery were exposed and ligated. Nylon wires 

(0.24–0.28 mm in diameter) (Beijing Xinong 

Biotechnology, China) were inserted deeply into the brain 

middle artery of rats for 1 h after oblique incision away 

from the internal carotid artery. The surgical sutures were 

pulled to the site where the common carotid artery was 

ligated for the reperfusion of the middle cerebral artery 

after 1 h ischemia. Rats from the sham operation group 

(sham group) were not subjected the external carotid 

artery blockage, but the rest steps were the same. 

 

Cell culture and oxygen-glucose deprivation and 

reperfusion (OGD/R) treatment of primary neurons 

 

Primary neuron cells were obtained from the brain cortex 

of newborn rats (24 hours old) and cultured in humidified 

incubator as previously depicted [23]. Approximately 2.0 

× 106 cells were seeded per well with 2 mL Neurobasal 

Medium including 2% B27 supplement + 1% 

streptomycin (100 U/mL) + 1% penicillin (100 U/mL). 

The neuron cells were cultured in 37°C humidified 

incubator containing 5% CO2 until 90% purity was 

achieved. OGD/R treatment was performed according to 

a method which was previously depicted [23]. In short, 

neuron cells were firstly washed and then cultured in 

glucose-free DMEM in humidified hypoxic incubator for 

1.5 h. The hypoxic incubator is equilibrated with hypoxic 

gas (5% CO2 + 1% O2 + 94% N2) for 37°C. Then, the 

glucose-free DMEM was replaced by the Neurobasal 

Medium and cells were changed backed to the normoxia 

(nor.) incubator. The negative control was neuron cells 

which cultured in normoxia. 

 

ShRNA synthesis and injection 

 

Sh-PTGS2 was synthesized by Cyagen Bioscience Inc 

(Guangzhou, China). The vector sh-NC was used as 

negative control. MCAO surgery was performed 21 

days after interference. Sh-PTGS2 was injected into the 

left lateral ventricle of rats at the speed of 0.5 μl/min 

after animals were anesthetized with 10% chloral 

hydrate. Then, we fixed the injection needle for 10 min 

and slowly removed from the left lateral ventricle of 

rats within 5 min. 

 

Measurement of cerebral infarction volume 

 

After 24 h reperfusion, the rats were deeply 

anesthetized and then decapitated. Their brain tissues 

were quickly removed and stored in −20°C for 20 min.

 

 
 

Figure 1. Flow chart of the study. 



www.aging-us.com 749 AGING 

Brains were sectioned into 3.0 mm-thick 5–6 coronal 

sections. The sections of brain were immersed in the 2% 

TTC solution (2,3,5-triphenyltetrazolium chloride, 

Sigma, USA) at 37°C for 40 min in a dark room. 

Subsequently, the slices were removed and fixed in 4% 

paraformaldehyde for 24 h. Then, the cerebral infraction 

volume was photographed with a digital camera and 

analyzed by ImageJ (ver1.37c, NIH) software. 

 

Evaluation of neurological deficits 

 

Zea-Longa Neurological Deficit Score [24] was selected 

to measured neurofunctional outcomes of operated rats 

after MCAO/R 24 h. This score based on a 5-point 

scale, and rats within 1–3 points were selected as 

experimental rats, and the other have been rejected. 

 

RNA collection, reverse transcription, and RT-

qPCR 

 

RNA was collected from primary neuron cells by the 

use of TRIzol (Invitrogen, USA). The RNA 

concentration was the measured under Nanodrop ND-

1000 spectrophotometry (Nanodrop Tech, USA) and 

RNA integrity was detected with denatured agarose gel 

electrophoresis. cDNA was acquired by reverse 

transcription using the SuperScript VILO cDNA Kit. 

The primers were constructed and synthesized by 

Sangon Biotechnology (Shanghai, China). RT-qPCR 

was conducted with the iQ5 RT-qPCR Detection 

System (Bio-Rad Laboratories, USA) following 

manufacturer’s instructions. Quantitative analysis of 

SLC7A11 and GPX4 was carried out using the SYBR 

Green Master Mix. 

 

Nissl staining 

 

For Nissl staining, the treated sections were orderly 

stained by Nissl Stain Kit (Solarbio, Beijing, China), 

and washed by double distilled water for 5 min. After 

thoroughly transparentized by xylene for 3 min, the 

sheets were slowly sealed with neutral resin [25]. The 

ultrastructural pathological changes of each section 

were observed under optical microscope. 

 

Measurement of ROS, MDA, GSH and oxidative 

stress index (OSI) 

 

Intracellular ROS level were detected by the ROS 

Assay Kit kits (Beyotime; S0033; China) according to 

the recommended manuals. The MDA and GSH levels 

were conducted using MDA Assay Kit (Beyotime; 

S0131; China) and GSH Assay Kit (Nanjing Jiancheng 
Bioengineering Institute; A006-2-1; China) according to 

the instructions. Moreover, oxidative stress was deeply 

measured by the oxidative stress index (OSI) which was 

the ratio of TOS (Randox Laboratories, UK): TAC 

(Randox Laboratories, UK) [26]. 

 

Western blot 

 

The brains were washed directly by saline perfusion and 

then the proteins of the brain tissues were cracked in 

RIPA buffer (RIPA: PMSF = 100:1). After measured all 

needed densities, the prepared proteins (20–30 µg/lane) 

were separated by SDS-PAGE (10%, 60 min) and then 

transferred onto pre-activated PVDF membranes. After 

blocking in skimmed milk (TBST: mike = 10:1) for 2 h 

at 37°C, the treated membranes were incubated with 

anti-PTGS2 (#12282; 1:600; CST; USA), SLC7A11 

(ab216876; 1:600; Abcam; USA), GPX4 (#52455; 

1:800; CST; USA) and β-actin (#4970; 1:4000; CST; 

USA) overnight at 4°C, using Antibody Diluent Solution 

(Life-iLab, Shanghai, China). Next day, following treated 

with corresponding secondary antibody, the finished 

membranes were visualized by ECL kit. 

 

Statistical analysis 

 

Differences were assessed using One-way analysis of 

variance (ANOVA) and Student’s t-test. All analyses were 

conducted using SPSS 25.0 software and GraphPad Prism 

8.0.1. Experiments were performed independently three 

times. P < 0.05 was considered statistically significant. 

 

Data availability statement 

 

The datasets were downloaded from the GEO 

(https://www.ncbi.nlm.nih.gov/geo/) in this study. 

 

RESULTS 
 

Identification of DEGs and DEOSGs 

 

The analysis of differentially expressed genes (DGEs) 

(GSE22255) was performed by the “limma” package.  

A total of 1766 DEGs were obtained. Figure 2A, 2B 

showed the volcano and heatmap. Using the GeneCards 

(https://www.genecards.org/), a comprehensive data-

base for searching and predicting a wide range of 

human genes, we obtained 1934 OS genes (relevance 

score ≥4) from GeneCards. Among the DEGs and OS 

genes, there were 149 overlapping items between DEGs 

and OS genes (Figure 2C). Here, we selected the 149 

DEOSGs overlapping for subsequent researches. The 

PPI network of DEOSGs was visualized by Cytoscape 

software (Figure 2D, 2E). 

 

Biological functional enrichment research of DEOSGs 

 

We executed GO and KEGG databases to detect the 

potential and meaningful functions and related 

https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
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pathways of DEOSGs. The GO analysis clearly 

suggested that these DEOSGs in the biological 

processes (BP) were most enriched in “response to 

oxidative stress (GO:0006979)” and “cellular response 

to chemical stress (GO:0062197)”. These DEOSGs in 

cell component (CC) were most concentrated exist in 

“mitochondrial matrix (GO:0005759)” and “secretory 

granule lumen (GO:0034774)”. Alterations in molecular 

function (MF) were dominantly brimming with 

“antioxidant activity (GO:0016209)” and “RNA 

polymerase II-specific DNA-binding transcription 

factor binding (GO:0061629)” (Figure 3A). Among the 

significant DO enrichment (Figure 3B), the ischemic 

disease occupied a higher position. Most importantly, 

“PI3K-Akt signaling pathway (hsa04151)”, “Human 

papillomavirus infection (hsa05165)” and “MAPK 

signaling pathway (hsa04010)” were highlighted in the 

KEGG analysis (Figure 3C, 3D). 

 

Identification of the specific DEOSGs in IS 

 

Next, we selected three novel machine learning 

algorithms to further screen out the key DEOSGs that 

are more important for the diagnosis and prognosis of 

our disease. We identified 24 specific DEOSGs (RYR1, 

FOS, PTGS2, PPARGC1A, NFS1, etc.,) with the 

LASSO logistic regression algorithm (Figure 4A, 4B). 

Furthermore, 15 specific DEOSGs (PTGS2, FOS, 

ACOX1, POLR1C, PTGS2, etc.,) were next filtered 

according to the Random Forest algorithm and the 

analysis of these 15 specific DEOSGs in Random Forest 

algorithm was shown in Figure 4C, where the more 

prominent the red color was, the more important the 

DEOSGs were for IS diagnosis. In addition, 32 specific 

DEOSGs (MPO, PRDX3, RYR1, STIP1, NOS1, etc.,) 

were then detected by SVM-REF algorithm, of which 

the error and accuracy analysis were showed in Figure 

4D, 4E. Finally, 3 DEOSGs (PTGS2, FOS and RYR1) 

were selected by the combination of the three 

algorithms for the future validation (Figure 4F). 

 

Verification of the specific DEOSGs in IS 

 

We explored the expressions of the 3 DEOSGs in the 

GSE22255 dataset and found that PTGS2 and FOS were 

highly expressed and RYR1 was lowly expressed in the

 

 
 

Figure 2. Identification of DEGs and DEOSGs. (A) Volcano plot of DEGs in GSE22255. (B) Heatmaps of DEGs in GSE22255. (C) Venn 

diagram shown the 149 overlaps of DEOSGs between DEGs in GSE22255 and OS genes. (D, E) PPI network of the 149 DEOSGs. 
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IS group (Figure 5A–5C). And then GSE16561 was 

selected to further validate the expression value of these 

3 DEOSGs. The trends of the two databases were 

consistent (Figure 5D–5F). Subsequently, we plotted 

receiver operating characteristic (ROC) curve to 

thoroughly test their efficacy. For PTGS2, the area 

under the curve (AUC) was 0.698 (Figure 5G). Notably, 

the AUC for FOS was 0.728 (Figure 5H), and the AUC 

for RYR1 was 0.703 (Figure 5I). All results indicated 

that the PTGS2, FOS and RYR1 had high diagnostic 

values in IS. 

 

GSEA analysis and immune cell infiltration 

 

The potential functions of our 3 diagnostic DEOSGs 

were explored using GSEA. DEOSGs in the high-

expression cohorts were highly enriched in 

inflammatory (such as NF-κB pathway), OS-related 

signaling pathway and atherosclerosis, respectively 

(Figure 6A–6C). After considering the founding of 

GSEA, we deeply explored the correlation between 

these three DEOSGs and inflammation. Figure 6D–6F 

confirmed the correlation between 3 diagnostic 

DEOSGs and 22 immune cells. Surprisingly, there 

existed obviously positive correlation between PTGS2 

and 2 immune cells (Mast cells activated and T cells 

follicular helper), as well as obviously negative 

correlation between PTGS2 and Mast cells resting. 

Moreover, FOS was positively correlated with 

Neutrophils, but negatively correlated with T cells CD4 

naive. Besides, RYR1 was positively correlated with 

Plasma cells, but negatively correlated with 

Macrophages M0 and T cells CD4 naive. These 

exploratory findings will guide us to further 

comprehend the critical role of these DEOSGs. 

 

The expression of PTGS2 after MCAO/R 

 

Ferroptosis, a newly described non-apoptotic program-

med pattern of iron-dependent cell death, also has been 

identified to cause substantial damage to the structural 

and functional integrity of brain tissue [27]. 

 

 
 

Figure 3. Biological functional enrichment research of DEOSGs. (A) GO analysis of DEOSGs. (B) DO analysis of DEOSGs. (C, D) KEGG 
analysis of DEOSGs. 
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OS and ferroptosis both play fatal roles in the 

complicated pathological progress in IS, however, there 

are still few studies on the combination of them in IS. 

Here, among the specific DEOSGs, only PTGS2 was 

existed as upregulated ferroptosis-related DEGs (Figure 

7A). Following our machine learning analysis described 

above, RT-qPCR, Western blot and IHC were 

conducted to clearly verify the role of PTGS2 in the 

ischemic cortex of rats. In Figure 7B–7D, not only 

mRNA level but also protein level showed the same 

significant increase (P < 0.05) trend of PTGS2 

following MCAO/R 24 h compared with the control 

group. The results of IHC further confirmed the clear 

aggregation of PTGS2 in IS (Figure 7E, 7F). 

 

The effect of PTGS2 knockdown on neurological 

deficits and infarct volume after MCAO/R 

 

In order to explore the specific role of PTGS2 in the 

pathological process of IS, we respectively injected sh-

PTGS2 or sh-NC (negative control) into the left lateral 

ventricle of rats 21 days before surgery to induce the 

inhibition of PTGS2, and the schematic diagram of the 

experimental process was shown in Figure 8A. Figure 

8B showed that the transfection was clearly successful 

in rats. TTC staining revealed that sh-PTGS2 

administration could significantly reduce the volume of 

cerebral infarction compared with the MCAO group of 

rats (Figure 8C, 8D). Moreover, the neurological deficit 

scores and edema volume of rats were remarkably 

decreased following silencing PTGS2 (Figure 8E, 8F). 

More importantly, sh-PTGS2 rescued the neuronal 

damage, Nissl bodies decreased and nuclear shrinkage 

induced by MCAO (Figure 8G, 8H). These above 

evidences clearly indicated that silencing of PTGS2 

improved the outcome of IS. 

 

Effects of PTGS2 knockdown on oxidative stress and 

ferroptosis of IS in vitro 

 

In order to further explore the specific protective 

mechanism of PTGS2 knockdown in the progression of 

 

 
 

Figure 4. Identification of the specific DEOSGs in IS. (A, B) The LASSO logistic algorithm. (C) The important analysis of Random Forest 

algorithm. (D, E) The error and accuracy analysis of SVM-REF algorithm. (F) The intersection of the three algorithms (3 specific DEOSGs). 
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IS, we detected the levels of MDA, ROS, GSH and OSI 

in primary neuronal cells post OGD/R (a model 

simulating brain ischemia in vitro). The results showed 

a significant increase in ROS, MDA and OSI levels, 

while an obviously decrease in GSH level, indicating 

that OGD/R was sufficient to cause OS injury in 

primary neuronal cells. Surprisingly, PTGS2 knock-

down reversed this phenomenon (Figure 9A–9D). 

Ferroptosis is an iron-dependent programmed death 

triggered by lipid peroxide (LP) accumulation in the 

context of increased ROS production and GPX4 

inactivation. PTGS2 has been found to be a positive 

regulator of ferroptosis [28]. Therefore, in order to 

detect whether the ameliorative effect of PTGS2 

knockdown on IS was involved in ferroptosis, we 

further examined the characteristics of ferroptosis and 

the levels of key regulators iron, SLC7A11, and GPX4. 

As a result, it was consistent with expectations that the 

ischemic environment could remarkably increase iron 

content, while decreased the expression of SLC7A11 

 

 
 

Figure 5. Verification of the specific DEOSGs in IS. (A) The expression of PTGS2 in GES22255 dataset. (B) The expression of FOS in 

GES22255 dataset. (C) The expression of RYR1 in GES22255 dataset. (D) The expression of PTGS2 was validated in the GSE16561. (E) The 
expression of FOS was validated in the GSE16561. (F) The expression of RYR1 was validated in the GSE16561. (G) The ROC curve of PTGS2.  
(H) The ROC curve of FOS. (I) The ROC curve of RYR1. 
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Figure 6. GSEA analysis and immune cell infiltration. (A) The GSEA analysis of PTGS2. (B) The GSEA analysis of FOS. (C) The GSEA 

analysis of RYR1. (D) The correlation analysis of immune cell infiltration with PTGS2. (E) The correlation analysis of immune cell infiltration 
with FOS. (F) The correlation analysis of immune cell infiltration with RYR1. 

 

 
 

Figure 7. The expression of PTGS2 after MCAO/R. (A) Venn diagram showed that only PTGS2 was existed as upregulated ferroptosis-

related DEGs. (B) RT-qPCR analysis of PTGS2 mRNA level. (C, D) Western blot analysis of PTGS2 protein level. (E, F) Immunohistochemical 
analysis of PTGS2 expression. *p < 0.05; **p < 0.01; ***p < 0.001. 
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and GPX4 in primary neuronal cells, suggesting that 

OGD/R had ability to drive the occurrence of 

ferroptosis. In addition, PTGS2 knockdown rescued 

OGD/R-induced ferroptosis, mainly manifested in the 

reduction of iron content and the increase of SLC7A11 

and GPX4 expression (Figure 9E–9J). To sum up, the 

protective effect of PTGS2 knockdown on IS may be 

partly related to its anti-oxidative stress and anti-

ferroptosis. 

 

DISCUSSION 
 

Ischemic stroke (IS), a common acute cerebrovascular 

disease, could cause massive neuronal death and severe 

neurological dysfunction [29]. Therefore, it has become 

the second leading cause of death worldwide. Studies 

have confirmed that after the IS, a large number of 

reactive oxygen species (ROS) occurred in nerve cells, 

leading to the accumulation of oxidative stress (OS) and 

brain injury [30, 31]. Thus, the prediction of biological 

targets based on OS may bring a new breakthrough for 

clinical treatment. However, few studies recently have 

focused their attention on unearthing biomarkers of 

abnormal expression involved in oxidative stress 

between IS and normal tissues. 

 

In our current research, we identified 149 DEOSGs. The 

resulting GO enrichments revealed that these DEOSGs 

were primarily related to the oxidative stress and 

antioxidant activity. As we all know, although the 

 

 
 

Figure 8. Effects of PTGS2 knockdown on neurological deficits and infarct volume after MCAO/R. (A) Experimental protocol 

schedule. (B) The efficiency of siRNA-mediated knockdown of PTGS2 in rats. (C, D) TTC staining. (E) Neurological score analysis. (F) Water 
content of the brain. (G, H) Nissl staining. *p < 0.05; **p < 0.01; ***p < 0.001. 
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pathogenesis of IS are complex, different evidences 

have successively demonstrated that the up-regulated 

mitogen-activated protein kinase (MAPK) in brain of 

ischemic patients release a key function in the activation 

of OS and inflammatory process [32, 33]. MAPKs 

participate in the regulation of flexile biomolecular 

processes [34] and are formed by three subfamilies, c-

Jun N-terminal kinase (JNK) [35], p38 mitogen-

activated protein kinase (p38) [35], and extracellular 

signal-regulated kinase (ERK)1/2. Of which, JNK is 

mainly stimulated under conditions of OS, 

inflammation and so on. In contrast, ERK 1/2 activation 

is strongly dependent on the release of growth factors 

and cytokines, as well as p38 is similarly activated by a 

mass of cytokines, stress, etc., [36]. Tian et al., has 

identified that inhibition of TXNIP could clearly 

alleviated OS Injury by triggering MAPK-Nrf2 axis in 

IS [32]. All these data consistently indicate that MAPK 

signaling plays a non-negligible role in the OS 

pathogenesis of IS and its related genes are also worthy 

of our attention. Surprisingly, here “MAPK signaling 

pathway (hsa04010)” was highlighted in the KEGG 

analysis. 

 

PTGS2, FOS and RYR1 were identified as specific 

diagnostic DEOSG of IS using three novel machine 

learning algorithms (LASSO logistic regression, 

Random Forest and SVM-RFE). To be specific, we 

revealed that PTGS2 and FOS were significantly 

upregulated in IS (GSE22255), and they had a preferable 

performance as a diagnostic marker of the IS (the AUC 

of PTGS2 was 0.698; the AUC of FOS was 0.728). 

 

 
 

Figure 9. Effects of PTGS2 knockdown on oxidative stress and ferroptosis of IS in vitro. (A) ROS level of primary neuronal cells. 

(B) MDA level of primary neuronal cells. (C) GSH level of primary neuronal cells. (D) Oxidative stress index (OSI) level of primary neuronal 
cells. (E) Iron level of primary neuronal cells. (F, G) RT-qPCR analysis of SLC7A11 and GPX4 mRNA level. (H–J) Western blot analysis of 
SLC7A11 and GPX4 protein level. *p < 0.05; **p < 0.01; ***p < 0.001. 
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On the other side, the decided expression of RYR1 in 

samples from IS individuals was obviously lower than 

that of controls (GSE22255). Similarly, its ROC curve 

emerged well (the AUC of RYR1 was 0.703). After 

deeply calculation of the IS validation set (GSE16561), 

we were surprised to find that the expression of these 

DEOSG was consistent with the previous trend. 

Additionally, we spotted a dramatic relationship 

between 3 DEOSGs and immune cell infiltration, 

suggesting that PTGS2, FOS and RYR1 were mainly 

associated with Mast cells activated, Neutrophils and 

Plasma cells, respectively. 

 

Recently, emerging evidence has revealed some novel 

programmed cell death pathways participated in the 

progression of IS, including ferroptosis [37]. This 

special cell death form is obviously featured with GSH 

depletion as well as MDA and ROS accumulation [38]. 

Ferroptosis also has been identified to cause substantial 

damage to the structural and functional integrity of 

brain tissue [39, 40]. OS and ferroptosis both play fatal 

roles in the complicated pathological progress in IS, 

however, there are still few studies on the combination 

of them in IS. In this work, we intersected the 3 

diagnostic DEOSGs with eight upregulated ferroptosis-

related DEGs and finally obtained the only overlapping 

1 DEOSGs (PTGS2). Chen et al., has identified that 

PTGS2, as potential diagnostic biomarkers for IS, 

providing vital evidence about the function of 

ferroptosis in IS [41]. PTGS2 was also identified to 

play irreplaceable role in IS [42]. In this study, we 

further successfully constructed IS animal model 

(MCAO/R), after collecting brain cortical tissue of rats, 

RT-qPCR, western blot and IHC were all applied to 

verify our previous bioinformatics-based predictions. 

All of the three experimental results (PTGS2 was 

significantly increased in IS) were obviously consistent 

with the previous analyses. Moreover, functional 

experiments were executed using sh-PTGS2 

transfection, revealing that the volume of cerebral 

infarction, neurological injure and water content were 

inhibited following the interference of PTGS2 

compared with the MCAO group. Silencing PTGS2 can 

promote the better outcome of IS. More importantly, 

PTGS2 inhibition hindered OGD/R-induced ROS and 

MDA accumulation, and restores the GSH content. In 

addition, silencing of PTGS2 significantly eliminated 

the occurrence of ferroptosis triggered by OGD/R, 

manifested as an increase in key protein SLC7A11 and 

GPX4 of ferroptosis signal pathway. 

 

Nowadays, with the development of medical 

technology, molecular target diagnosis and therapies 

play an increasing role. In our study, we injected sh-

PTGS2 into rats, finding that sh-PTGS2 group could 

reduce the volume of cerebral infarction. Moreover, the 

neurological deficit scores and edema volume of rats 

were decreased. And sh-PTGS2 rescued the neuronal 

damage. Above all, silencing of PTGS2 could reduce 

the volume of cerebral infarction and rescue the 

neuronal damage. In clinical applications, early 

intervention and inhibition of PTGS2 may have certain 

therapeutic significance for reducing the area of cerebral 

infarction and neurological damage in IS patients. This 

study still has some shortcomings. The specific 

mechanism and pathway of PTGS2 still needs to be 

further explored, which is also the direction of our next 

research. 

 

CONCLUSION 
 

Our results provided novel targets for predicting IS 

progression and confirmed that PTGS2, FOS and RYR1 

have good diagnostic value for IS by a comprehensive 

bioinformatics analysis with three machine learning 

algorithms. Through in vivo and in vitro experimental 

validation, we found that the injury mechanism of IS 

involved oxidative stress and ferroptosis, inhibition of 

PTGS2 may alleviate the cerebral ischemic damage 

partly by anti-oxidative stress and ferroptosis. However, 

further meticulous works are warranted to deeply clarify 

the underlying mechanisms. Our findings might be 

conducive to clarify the pathogenesis of IS from a new 

perspective and provide a new horizon for clinical 

treatment. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. 1934 OS-related genes (the relevance score ≥4.0). 

 

 


