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ABSTRACT 
 

Background: Immune-related enhancer RNAs (eRNAs) have garnered significant attention in cancer metabolism 
research, yet their specific roles in ccRCC have remained elusive. 
Methods: We retrieved eRNA expression profiles from TCGA database and identified immune-related eRNAs 
(IREs) by assessing their co-expression with immune genes. Utilizing consensus clustering, we organized these 
IREs into two distinct clusters. The construction of an IREs signature was accomplished through the LASSO and 
multivariate Cox analysis. Furthermore, we performed Cell Counting Kit-8 and clonogenic assays to assess 
changes in the proliferative capacity of Caki-1 and 769-P cells. 
Results: The existence of two clusters of immune-related eRNAs in ccRCC, each with distinctive prognostic and 
immunological attributes. Cluster B exhibited immunosuppressive properties and displayed a positive 
correlation with immunosuppressive cells. Functional enrichment analysis unveiled their involvement in several 
tumor-promoting pathways, metabolic pathways and immune pathways. The IREs signature demonstrated its 
potential to accurately predict patient immune and prognostic characteristics. AC003092.1, an eRNA strongly 
associated with patient survival, emerged as a potential oncogene significantly linked to adverse prognosis and 
the presence of immunosuppressive cells and checkpoints in ccRCC patients. Notably, AC003092.1 displayed 
marked upregulation in ccRCC tissues and cell lines, and its knockdown substantially inhibited the proliferation 
of Caki-1 and 769-P cells. 
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INTRODUCTION 
 

Renal cell carcinoma (RCC) is an intricate malignancy 

that originates from epithelial cells, with renal clear cell 

carcinoma (ccRCC) being the most common subtype 

[1]. The incidence and mortality of ccRCC have been 

steadily increasing, now accounting for approximately 

two to three percent of adult malignancies [2, 3]. Given 

its insensitivity to targeted and immunosuppressive 

agents, surgical intervention remains the primary and 

most effective treatment modality [4]. Despite 

significant advancements in early screening and 

diagnosis, approximately 30% of patients present with 

metastases at the time of diagnosis and about 25% 

develop metastases following surgical treatment [5, 6]. 

Consequently, the urgency lies in the quest for an 

effective prognostic signature and potential biomarkers 

to enhance the treatment of ccRCC patients. 

 

RCC represents a prototypical immunogenic tumor that 

predominantly relies on inducing immunosuppressive 

cells, such as regulatory T cells, myeloid-derived 

suppressor cells, and macrophages, to create an 

immunosuppressive microenvironment [7]. The 

immune microenvironment has a dual role—it can 

inhibit tumor growth but also facilitate tumor 

progression by altering tumor immunogenicity or 

immunosuppression status [8]. Within the RCC tumor 

microenvironment, immunosuppressive cells may 

disrupt immune surveillance, ultimately leading to 

tumor immune evasion or escape [9]. RCC achieves this 

by upregulating the expression of immunosuppressive 

checkpoints, thereby inhibiting the activity of effector T 

cells and antigen-presenting cells, thus promoting tumor 

metastasis [10]. Consequently, it becomes imperative to 

explore the immune-related prognostic model for 

ccRCC. 

 

Long noncoding RNAs (lncRNAs) are RNA transcripts 

exceeding 200 nucleotides in length that do not encode 

proteins; they are distributed widely in both the cytosol 

and nucleus [11, 12]. A growing body of evidence 

underscores the pivotal role of lncRNAs in regulating 

gene expression, translation and tumor progression [13, 

14]. eRNAs are a class of RNA transcribed from 

enhancer regions on the genome, and they are found 

abundantly in most human cells and tissues [15, 16]. 

There is mounting evidence linking eRNA 

transcriptional levels to enhancer activity, implicating 

them in gene transcriptional regulation and their close 

association with tumor proliferation and metastasis [17, 

18]. Moreover, eRNAs may contribute to tumor 

progression by regulating nuclear histone structure or 

interacting with transcriptional regulators [19, 20]. In 

human cells, eRNA participate in various signal 

transduction pathways and influence the construction of 

immune microenvironment by mediating the activation 

of target genes, thus underscoring the clinical 

significance of eRNA-targeted therapy [17]. Although 

immune-related eRNAs (IREs) play a substantial role  

in gene transcriptional control, their underlying 

mechanisms in ccRCC remain elusive. 

 

In this study, we conducted a comprehensive evaluation 

of the prognostic characteristics of IREs in ccRCC. 

Notably, we established two distinct clusters of IREs, 

each with unique prognostic and immune charac-

teristics. Additionally, we developed an IREs prognostic 

model that effectively predicts the survival rates of 

ccRCC patients. AC003092.1, a key player in the 

regulation of the tumor immune microenvironment, 

holds promise in guiding the development of 

immunotherapies for ccRCC. 

 

METHODS 
 

Clinical data acquisition and extraction 

 

Gene expression profiles and clinical data of ccRCC 

patients were sourced from The Cancer Genome Atlas 

(TCGA). The dataset comprised 538 cases of ccRCC 

tissues and 72 cases of normal tissues. For validation, 

gene expression data for ccRCC were obtained from 

ArrayExpress (https://www.ebi.ac.uk/arrayexpress) and 

the International Cancer Genome Consortium (ICGC) 

(https://icgc.org). The ArrayExpress dataset has the 

accession number E-MTAB-1980, including 106 cases 

with follow-up information. The ICGC dataset is 

labeled as RECA-EU and encompasses 91 cases with 

follow-up data. 

 

Identification of immune-related eRNAs 

 

To identify immune-related eRNAs (IREs), we gathered 

immune-related genes from the Molecular Signatures 

Database (MSigDB) categories IMMUNE_RESPONSE 

and IMMUNE_SYSTEM_PROCESS. We determined 

eRNAs transcribed from active tissue-specific 

Conclusion: We established a robust predictive model that played a vital role in determining the prognosis, 
clinicopathological characteristics and immune cell infiltration patterns of ccRCC patients. IRE, particularly 
AC003092.1, which was strongly associated with survival, hold promise as novel immunotherapeutic targets for 
ccRCC. 

https://www.ebi.ac.uk/arrayexpress
https://icgc.org/
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enhancers and predicted their target genes using the 

Predicted Gene and enhancer Specific Tissue 

Interaction (PresSTIGE) method [21, 22]. The Pearson 

correlation analysis was employed to screen for IREs, 

with the criterion being a |Pearson correlation 

coefficient| >0.4 and p < 0.001. AC003092.1 expression 

in ccRCC was assessed using quantitative real-time 

PCR (qRT-PCR). The primers for AC003092.1 were as 

follows: Forward: TTAGCAGCAAACCCAGAAC; 

Reverse: TGCTGAGGATACATGACGAA. The 

primers for GAPDH were: Forward: GAGGTGATA 

GCATTGCTTTCG; Reverse: CAAGTCAGTGTACA 

GGTAAGC. 

 

Construction of immune-related eRNAs clusters and 

bioinformatics analysis 

 

We conducted univariate Cox regression analysis to 

identify IREs associated with prognosis. To investigate 

the function of IREs in ccRCC, we employed the 

“Consensus ClusterPlus” package for patient 

classification. Kaplan-Meier (KM) survival curves were 

generated to assess survival differences among these 

clusters. To further analyze biological pathways, we 

screened differential expression genes (DEGs) based on 

the criteria |log 2 (fold change FC)| >2 and adjusted P-

value < 0.001. We used Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

for the analysis of molecular roles and associated 

biological processes of DEGs. Additionally, Gene Set 

Variation Analysis (GSVA) enrichment analyses were 

conducted to evaluate pathway enrichment using the R 

package “GSVA” and “c2.cp.kegg.v7.4.symbols” from 

the MSigDB. The gene set “c2.cp.kegg.v7.4. symbols” 

is a commonly used gene set from the MSigDB 

database, which aggregates information related to gene 

pathways. 

 

Analysis of immune characters in immune-related 

eRNAs clusters 

 

We employed single-sample Gene Set Enrichment 

Analysis (ssGSEA) to calculate the scores of immune-

infiltrating cells and immune-related pathways in 

individual samples. The “ESTIMATE” R package was 

used to estimate tumor purity, stromal and immune 

scores in the tumor microenvironment of ccRCC 

samples. 

 

Establishment of immune-related eRNAs signature 

 

Using the expression profile of prognostic IREs, we 
utilized the Least absolute shrinkage and selection 

operator (LASSO) regression analysis and multivariate 

Cox regression analysis to screen key genes and 

construct the IREs prognostic model. The following 

formula was used to calculate the risk score for each 

sample: 

 

 Riskscore ( exp )
i

l
Coefi Gen i=   

 

Here, “Coef” represents non-zero regression 

coefficients determined through multivariate Cox 

regression analysis, and “Genexp” is the expression 

values of genes from IREs prognostic model. Patients 

were divided equally into high - and low-risk groups 

according to the median riskscore. KM survival curves 

were constructed to compare survival differences 

between these groups. Univariate and multivariate Cox 

regression analyses were conducted to assess the 

independence of riskscore and various clinico-

pathological features including age, gender, histological 

grade, pathological stage, and TMN stage. 

 

Prognostic features of immune-related eRNAs 

signature 

 

To analyze the correlation between riskscore and 

clinicopathological variables, we further assessed 

differences in the riskscore among various clinico-

pathological variables. Chi-square tests were employed to 

evaluate differences in the distribution of clinico-

pathological variables between the high - and low-risk 

groups. Additionally, KM survival curves were used to 

analyze differences in survival between the high - and 

low-risk groups within different clinical phenotypes. 

 

Identification of the key eRNA in ccRCC 

 

Based on the significant IREs expression profiles 

identified through univariate Cox analysis, patients 

were divided into high and low expression groups, and 

survival characteristics in ccRCC were analyzed further. 

Co-expression analysis was used to assess the 

correlation between IREs expression levels and their 

predicted target genes. IREs were included if they 

demonstrated a significant association with overall 

survival (OS) (KM log rank p < 0.05) and a significant 

association with predicted target genes (|r| >0.4 and p < 

0.001). Key IREs, most relevant for survival according 

to log rank p-values, were selected for further analysis. 

The prognostic features of key IREs and their 

correlation with clinicopathological features were also 

investigated. 

 

Cell culture and plasmid construction 

 

We obtained two human ccRCC cell lines (Caki-1 and 

769-P) and a human renal proximal tubular epithelial 

HK2 cell line (HRPTEpiC) that were purchased from the 

cell bank of the Chinese Academy of Sciences 

(Shanghai, China). All cells were cultured in RPMI 1640 
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medium (Thermo Fisher Scientific, Inc., Waltham, MA, 

USA) supplemented with 10% fetal bovine serum (FBS; 

Thermo Fisher Scientific, Inc.) at a constant temperature 

of 37°C in a humidified atmosphere containing 5% CO2. 

 

To silence AC003092.1, two siRNAs were transfected 

into Caki-1 and 769-P cells using Lipofectamine 3000 

(Thermo Fisher Scientific, Inc.), following the 

manufacturer’s instructions. The sequences used for 

siRNA-1 were: Sense: GUAAUCCAGCGAAUCUGGA; 

Antisense: UCCAGAUUCGCUGGAUUAC; siRNA-2: 

Sense: CAGCAAUCAACAUAAUCAA; Antisense: 

UUGAUUAUGUUGAUUGCUG. 

 

Cell counting kit-8 (CCK8) assay 

 

Briefly, Caki-1 and 769-P cells, after various 

interventions, were incubated in 96-well plates (2 × 103) 

with 200 µL of culture medium at 37°C with 5% CO2. 

On days one, two, three, four and five, 20 μL CCK-8 

solution was added into each well, and incubation was 

carried out for two hours. Absorbance was measured at 

an optical density of 450 nm using a Microplate reader 

(Bio-Rad Laboratories Inc., Hercules, CA, USA). 

Experiments were conducted in triplicate. 

 

Cell growth assay and clonal formation assay 

 

For the Cell Growth Assay, cell viability was assessed 

in accordance with the manufacturer’s instructions. 

Cells were initially seeded at a density of 2 × 103 cells 

per well in 96-well plates and evaluated at 0, 24, 48, 72, 

and 96 hours by the Cell Counting Kit-8 (Beyotime, 

Shanghai, China) and the Synergy H1 microplate reader 

(BioTek, Winooski, VT, USA) at 450 nm. In the case of 

the Clonal Formation Assay, after transfection and 

selection, 200 cells were distributed in 6-well plates in 

triplicate and incubated for 14 days. Subsequently, the 

cells were fixed with 10% ice-cold methanol and stained 

with 0.5% crystal violet solution. Colonies consisting 

more than 50 cells per colony were counted, and 

independent experiments were conducted in triplicate. 

 

Data availability statement 

 

All data used in this work can be acquired from (TCGA, 

(https://portal.gdc.cancer.gov/), GEO (https://www.ncbi. 

nlm.nih.gov/geo/). 

 

RESULTS 
 

Establishment of immune-related eRNAs clusters 

 

The Supplementary Figure 1 displayed the entire 

process of this study. Initially, we employed univariate 

Cox regression analysis on a set of 146 IREs, 

meticulously selecting 64 IREs linked to prognosis 

based on the stringent criterion of P < 0.01 

(Supplementary Table 1). Subsequently, utilizing the 

expression profile of these prognostic IREs, we 

categorized patients into two distinct clusters, denoted 

as cluster A and cluster B, employing the Consensus 

ClusterPlus package (Figure 1A). KM survival curve 

analysis revealed a notable difference in survival 

between these clusters, with cluster B associated with a 

less favorable prognosis (Figure 1B). Furthermore, 

principal component analysis (PCA) illustrates the 

distinction between cluster A and cluster B (Figure 1C). 

The heatmap was generated to display the distribution 

of the IREs’ expression and clinicopathological 

variables, highlighting the higher expression of IREs in 

cluster A (Figure 1D). Additionally, we employed 

GSVA to assess differences in biological pathways 

between the two clusters. The results indicated 

enrichment of multiple metabolic pathways, including 

fatty acid metabolism, glycerolipid metabolism and beta 

alanine metabolism in cluster A, while cluster B 

exhibited enrichment in multiple pro-cancer pathways, 

such as the P53 signaling pathway (Figure 1E). 

 

Furthermore, we screened 2619 DEGs for further 

analysis based on the criteria of |log 2 (fold change FC)| 

>2 and adjusted P-value < 0.001. These DEGs were 

categorized into Biological Process (BP), Cellular 

Component (CC), and Molecular Function (MF) groups. 

In the BP group, genes were primarily enriched in 

processes related to neutrophil activation, response to 

oxidative stress, and regulation of angiogenesis. In the 

CC group, genes were concentrated in focal adhesion, 

cell–substrate adherens junctions, and cell–substrate 

junctions. In the MF group, genes were significantly 

enriched in functions related to cell adhesion molecule 

binding, cadherin binding, and growth factor binding 

(Figure 1F). The KEGG enrichment analysis 

highlighted the significant enrichment of DEGs in 

multiple pro-cancer pathways, renal cell carcinoma, 

metabolic pathways and hypoxia related pathways 

(Figure 1G). 

 

Identification immune characteristics of immune-

related eRNAs clusters 

 

To investigate the immune characteristics of the 

Immune-Related eRNAs clusters, we utilized the 

ssGSEA algorithm to calculate the immunosuppressive 

cell infiltration score in individual ccRCC samples. 

Notably, immunosuppressive cells, including Myeloid-

Derived Suppressor Cells (MDSCs), Macrophages, and 

Regulatory T cells, exhibited significant overexpression 

in cluster B (Figure 2A–2C). Furthermore, we applied 

the ESTIMATE algorithm to calculate the estimated 

score, immune score, stromal score and tumor purity of 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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the tumor microenvironment. Our findings indicated 

that estimated score, immune score, and stromal score 

were significantly higher in cluster B, while tumor 

purity was significantly lower in cluster B (Figure 2D–

2G). We further analyzed the differential expression of 

immune function pathways among the different clusters, 

revealing that pathways such as Antigen-Presenting Cell 

(APC) co-stimulation, Cytokine Receptor Regulation 

(CCR), Checkpoint Pathways, and Parainflammation 

were significant higher in the cluster B (Figure 2H). 

 

 
 

Figure 1. Establishment biological analysis of immune-related eRNAs clusters. (A) Sample distribution of 2 immune-related 

eRNAs clusters; (B) KM curve showing the survival differences between clusters; (C) PCA showing the trend of sample distribution between 
2 clusters. (D) The heatmap presenting the distribution of immune-related eRNAs and clinical phenotype; (E) The heatmap showing the 
results of GSVA enrichment analysis between 2 clusters. Pink represented activated pathways; blue represented inhibited pathways. (F) GO 
analysis of differential genes between clusters. (G) KEGG analysis of intersection genes of differential genes between clusters. 
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Development of immune-related eRNAs signature 

 

In the process of developing the IREs signature, we 

initially employed Lasso regression analysis to further 

refine our selection from the initial 64 prognostic IREs, 

ultimately identifying 33 prognostic IREs (Figure 3A, 3B). 

Subsequently, we utilized multivariate Cox regression 

analysis and identified the 15 most relevant IREs with 

the lowest Akaike information criterion (AIC) value, 

which were then used to construct the IREs signature 

(Figure 3C). Based on the median of riskscore, ccRCC 

patients were equally divided into high and 

 

 

 
 

Figure 2. Differences in immune characteristics between immune-related eRNAs clusters. (A–C) Differences in expression of 
immunosuppressive cells between 2 clusters (A: MDSC; B: Macrophage; C: Regulatory.T.cell); (D–G) Differences in the expression of tumor 
microenvironment score between 2 clusters (A: StromalScore; B: ESTIMATEScore; C: ImmuneScore; D: TumorPurity); (H) Differences in 
expression of immune function pathways between 2 clusters. 
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low risk groups. The riskscore exhibited an inverse 

association with patient survival in the ccRCC sample, 

clearly depicted in Figure 3D. Furthermore, the heatmap 

illustrated the distribution of the modeled genes and 

clinicopathological variables (Figure 3E). The KM 

survival curve analysis highlighted that patients in the 

high-risk group had a significantly worse prognosis 

compared to those in the low-risk group (Figure 3F). 

We assessed the predictive accuracy of the riskscore by 

calculating the Area Under the Curve (AUC) for one-

year, two-year, and tree-year risk scores, resulting in 

AUC values of 0.809, 0.783, and 0.781, respectively. 

This demonstrated that the riskscore was effective in 

accurately predicting patient prognosis (Figure 3G). To 

further validate the independence and accuracy of the 

riskscore in predicting patient prognosis, we performed 

univariate and multivariate independent prognostic 

analyses, considering the riskscore and clinico-

pathological variables. The univariate independent 

prognostic analysis demonstrated that age, grade, stage, 

TMN stage, and riskscore significantly impacted OS 

(Figure 3H). Meanwhile, the multivariate independent 

prognostic analysis confirmed that the riskscore 

remained an independent prognostic indicator for OS 

(HR: 1.100, 95%CI: 1.057−1.146, p-value < 0.001) 

(Figure 3I). 

 

Identification of clinical characteristic of immune-

related eRNAs signature 

 

To further investigate the relationship between riskscore 

and clinicopathological variables, we initially examined 

 

 
 

Figure 3. Establishment prognostic analysis of immune-related eRNAs signature. (A) LASSO coefficient profiles of the expression 

of prognostic immune-related eRNAs. (B) Selection of the penalty parameter (λ) in the LASSO model via 10-fold cross-validation. (C) Results 
of immune-related eRNAs multivariate analysis; (D) Relationship between the survival status/immune-related eRNAs signature rank and 
survival time (years)/immune-related eRNAs signature rank; (E) Distribution of immune-related eRNAs expression and clinical phenotype 
between high and low risk groups; (F) KM curve showing the survival differences between high and low risk groups; (G) Time-dependent 
ROC curve for OS of the riskscore. The AUC was assessed at 1, 2 and 3 years; The univariate (H) and multivariate (I) Cox regression analysis 
of riskscore, age, gender, grade, stage, and TMN. 
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the differences in riskscore expression among various 

clinicopathological variables. Interestingly, significant 

variations in riskscore expression were observed among 

different IREs clusters, histological grade, pathological 

stage, and TNM stage (Figure 4A). Notably, a trend was 

observed where more advanced clinical phenotypes 

were associated with higher riskscores. Additionally, we 

conducted chi-square tests to evaluate differences in the 

distribution of clinicopathological variables between 

high and low-risk groups. The results revealed that the 

high-risk group had a higher proportion of advanced 

clinicopathological variables, and these differences 

were statistically significant, except for the N stage 

(Figure 4B). Furthermore, through an analysis of the 

differences in survival between the high and low risk 

groups within various clinical phenotypes, we observed 

that the high-risk group consistently exhibited a poorer 

prognosis across all clinical phenotypes, with 

statistically significant differences (Figure 4C). 

Identification of prognostic characteristics of the key 

eRNA---AC003092.1 

 

As detailed in Supplementary Table 2, AC003092.1 

emerged as the eRNA most strongly associated with 

survival, with a notably positive correlation to its 

predicted target, TFPI2. Subsequently, patients were 

evenly stratified into high and low AC003092.1 

expression groups based on the median expression of 

AC003092.1 in ccRCC. Differences in survival 

outcomes, including OS, disease specific survival 

(DSS), and progress free interval (PFI) were assessed 

between these two groups. The analysis revealed that 

the high AC003092.1 group exhibited an adverse 

prognosis in OS, DSS, and PFI compared to the low 

AC003092.1 group, and these differences held 

statistical significance (Figure 5A–5C). Furthermore, 

when comparing AC003092.1 expression levels 

between ccRCC and adjacent tissues, AC003092.1 was 

 

 
 

Figure 4. Clinicopathological characteristic of the immune-related eRNAs signature. (A). Differences in the expression of 

riskscore in various clinicopathological stages; (B) Differences in the proportion of different clinicopathological stages between high and low 
riskscore groups. (C) KM survival curve showing the survival differences between high and low score groups in different clinicopathological 
stages. 
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found to be significantly upregulated in ccRCC (Figure 

5D). The KM survival curve demonstrated that the high 

TFPI2 group was associated with a less favorable 

prognosis for ccRCC patients (Figure 5E). Additionally, 

we delved into the relationship between AC003092.1 

expression and clinicopathological characteristics in 

ccRCC, revealing a significant positive correlation 

between the expression level of AC003092.1 and 

several clinicopathological features, including patient 

status, histological grade, pathological stage, and TNM 

stage (Figure 5F–5J). Furthermore, external validation 

sets, E-MTAB-1980 and ICGC, corroborated the 

association of AC003092.1 expression with a poor 

prognosis (Figure 5K, 5L). 

 

 
 

Figure 5. Clinical and prognostic characteristics of AC003092.1 in ccRCC. (A–C) KM survival curve showing the survival differences 

between high and low AC003092.1 groups (A: OS; B: DSS; C: PFI); (D) Difference of AC003092.1 mRNA expression between ccRCC and 
adjacent tissues; (E) KM survival curve showing the survival differences between high and low TFPI2 groups; (F–J) Differences of 
AC003092.1 expression in different clinicopathological variables (F: Grade; G: Stage; H: T stage; I: M stage; J: N stage); (K, L) KM survival 
curve showing the survival differences between high and low AC003092.1 groups in the E-MTAB-1980 and ICGC datasets. 
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Identification of immune characteristics of the key 

eRNA---AC003092.1 

 

To gain deeper insights into the role of AC003092.1 in 

the tumor microenvironment, we explored the 

correlation between AC003092.1 and immune cells as 

well as tumor microenvironment scores. A heatmap 

highlighted that immunoinfiltrating cells and tumor 

microenvironment score were notably upregulated in 

the high AC003092.1 group (Figure 6A). Figure 6B 

presented the correlation between AC003092.1 and 

immune infiltrating cells, revealing a significantly 

 

 
 

Figure 6. Immune characteristics of AC003092.1 in ccRCC. (A) Distribution of immune infiltrating cells and tumor microenvironment 

scores in high and low AC003092.1 expression groups; (B) Correlation between immunoinfiltrating cells and AC003092.1 expression 
profiles. (C–E) Differences in immunosuppressive cell expression between high and low AC003092.1 groups (C: Macrophage; D: 
Regulatory.T.cell; E: MDSC); (F–H) Differences in tumor microenvironment scores between high and low AC003092.1 groups (F: 
ImmuneScore; G: StromalScore; H: ESTIMATEScore); (I–K) Differences in immune suppression checkpoints between high and low 
AC003092.1 groups (I: TGFBR1; J: CTLA4; K: CD96). 
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positively correlation with immunosuppressive cells 

(MDSC, Macrophage and Regulatory.T.cell) and a 

negative correlation with NK cells and neutrophils. This 

analysis was complemented by a noticeable increase in 

the expression of immunosuppressive cells in the high 

AC003092.1 group when compared to the low 

AC003092.1 group (Figure 6C–6E). Additionally, the 

tumor microenvironment score, encompassing estimated 

score, immune score, and stromal score, was significantly 

elevated in the high AC003092.1 group (Figure 6F–6H). 

Further exploration of the correlation between 

AC003092.1 and immunosuppressive checkpoints 

revealed that immunosuppressive checkpoints (TGFBR1, 

CTLA4, and CD96) were also significantly upregulated 

in the high AC003092.1 group (Figure 6I–6K). 

 

AC003092-knockdown suppressed proliferation in 

Caki-1 and 769-P cells 

 

RT-qPCR results indicated that AC003092.1 was 

substantially upregulated in ccRCC tissues (Figure 7A). 

Comparative analysis with HK2 cell lines showed a 

significant increase in AC003092.1 expression in renal 

cell lines, particularly in 769-P and Caki-1, with the 

highest expression observed in Caki-1 (Figure 7B). 

Subsequently, AC003092.1-shRNA was transfected into 

769-P and Caki-1 cells to effectively knock down 

AC003092.1, confirmed by RT-qPCR (Figure 7C). 

Next, CCK8 assay revealed that AC003092.1 

knockdown led to a reduction in proliferation in both 

769-P and Caki-1 cells (Figure 7D). In the clonogenic 

assay, AC003092.1 knockdown resulted in a sig-

nificantly lower number of colonies formed in both 769-

P and Caki-1 cells compared to the empty vector 

controls (Figure 7E). 
 

DISCUSSION 
 

Epidemiological studies have revealed a rising 

incidence and mortality rate of RCC. RCC is 

characterized as an immunogenic tumor with infiltrating 

myeloid cell, including macrophages and neutrophils as 

well as CD8+ T cells and natural killer (NK) cells [23]. 

Despite the identification of immune cells and immune 

checkpoints as novel prognostic biomarkers and 

therapeutic targets for ccRCC, only a fraction of 

patients with ccRCC benefit from such approaches [9, 

24]. The dysregulation of eRNAs is closely linked to 

various human diseases and immune microenvironment, 

making eRNAs a promising target for effective 

therapeutic interventions [25, 26]. Therefore, our 

objective was to construct a novel IREs prognostic  

 

 
 

Figure 7. AC003092-knockdown suppressed proliferation in caki-1 and 769-P cells. (A) Differences in AC003092.1 expression 

between ccRCC tissues and adjacent tissues; (B) Differences in AC003092.1 expression between HK2 and renal cell lines 769-P and Caki-1; 
(C) The expression of AC003092 was downregulated in 769-P and Caki-1 cells, respectively, as determined by RT-qPCR; (D) AC003092-
knockdown suppressed ccRCC cell proliferation in 769-P and Caki-1 cells; (E) Clonogenic formation in AC003092-knockdown 769-P and Caki-
1 cells, along with images of formed clones following control cells for two weeks. 
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model for ccRCC, aiming to identify reliable predictive 

and prognostic biomarkers while exploring new 

immunotherapeutic targets. 

 

eRNA represents a noncoding RNA transcribed by 

enhancers, facilitating the activation of target genes [27, 

28]. These eRNAs not only play a role in regulating the 

immune response but are also involved in numerous 

tumorigenic signaling pathways, such as p53 and 

immune checkpoints, which hold pivotal roles in tumor 

progression and metastasis [29]. For instance, KLK3 

eRNA (KLK3e) selectively enhances the expression of 

androgen receptor-regulated genes, thereby promoting 

the proliferation and metastasis of prostate cancer [30]. 

NET1e is significantly overexpressed in breast cancer 

and is associated with poor prognosis [17]. As our 

understanding of eRNA mechanisms deepens, studies 

have revealed that eRNAs fulfill diverse biological roles 

in the metastasis and progression of various tumors 

[31]. Fan et al. constructed an eRNA-related prognostic 

model in prostate cancer that effectively predicted 

patient outcomes and explored the immune 

characteristics of this model [32]. The similarity 

between our study and other model-based research lies 

in the fact that both involve clustering key genes, 

building models, and subsequently analyzing the 

model’s immune, mutation, and prognostic features 

[33–38]. Notably, our study extended beyond the 

prognosis and immune characteristics of the IREs 

signature; we also identified the most relevant eRNA 

for survival and conducted in-depth analyses of its 

immune and clinicopathological characteristics. 

 

In our investigation, AC003092.1 emerged as the IRE 

most strongly associated with survival in ccRCC. 

AC003092.1 was significantly upregulated in ccRCC 

and exhibited a close association with poor prognosis 

and clinicopathological staging. Furthermore, 

AC003092.1 displayed a significant positive cor-

relation with immunosuppressive cells and immuno-

suppressive checkpoints, suggesting its potential 

involvement in shaping an immunosuppressive 

microenvironment. Notably, Guo et al. demonstrated 

that AC003092.1 was an IRE, linked to immune cell 

composition, function, and pathways, possibly 

contributing to the formation of glioblastoma 

multiforme (GBM). In GBM patients, AC003092.1 was 

significantly correlated with poor prognosis and the 

upregulated expression of its target gene, TFPI2 [39]. 

AC003092.1’s role in GBM involves enhancing the 

sensitivity of GBM to temozolomide through the 

mediation of the miR-195/TFPI-2 signaling pathway, 

impacting patient prognosis. Furthermore, AC003092.1 

can counteract the upregulation of TFPI2 expression by 

miR-195, thus promoting temozolomide-induced 

apoptosis [40]. These findings highlighted AC003092.1 

as a promising molecular target for preventive and 

therapeutic strategies of ccRCC. However, a com-

prehensive understanding of the molecular mechanisms 

governing AC003092.1’s aberrant regulation and its 

role in ccRCC progression necessitates further 

investigation, ideally through in vivo and in vitro 

experimental analysis. 
 

Nonetheless, it is important to acknowledge certain 

limitations in our study. Firstly, our data analysis 

relied on publicly available datasets, and additional 

datasets should be employed for further validation of 

our results. Additionally, the biological mechanism 

underlying AC003092.1’s influence on reshaping the 

immunosuppressive microenvironment warrant 

exploration through in-depth in vivo and in vitro 

experiments. 
 

CONCLUSION 
 

IREs played a pivotal role in shaping the immuno-

suppressive TME in ccRCC. The IREs signature 

demonstrated remarkable accuracy in distinguishing the 

immune characteristics and predicting the prognosis of 

ccRCC patients. AC003092.1, specifically, exhibited an 

immunosuppressive effect within the TME and hold 

promise as a potential therapeutic target for ccRCC 

treatment. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 

 
 

Supplementary Figure 1. The flow chart of the research. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Univariate Cox regression analysis results of IREs. 

 

Supplementary Table 2. Prognostic features of IREs and correlation of target genes. 

eRNA KM Target cor corPval 

AC003092.1 8.82E-08 TFPI2 0.522450477 4.42E-39 

EMX2OS 6.02E-07 EMX2 0.809246934 0 

CCDC18-AS1 7.21E-06 CCDC18 0.74912757 0 

LINC01389 2.27E-05 FOXD2 0.418684344 2.74E-24 

STX4 3.93E-05 FBXL19 0.625144013 0 

STX4 3.93E-05 HSD3B7 0.626346923 0 

STX4 3.93E-05 ORAI3 0.556775018 0 

STX4 3.93E-05 PRSS53 0.650196372 0 

SSPO 0.000113124 ZNF467 0.42944313 0 

SSPO 0.000113124 ZNF862 0.678603729 0 

SLC25A24P1 0.000144688 NBPF4 0.523680588 2.74E-39 

SLC25A24P1 0.000144688 NBPF6 0.485813742 2.86E-33 

FRY 0.000161361 FRY 1 0 

AFG3L1P 0.000331435 FANCA 0.417693895 0 

AFG3L1P 0.000331435 MC1R 0.786988388 0 

AFG3L1P 0.000331435 SPIRE2 0.424867444 0 

AFG3L1P 0.000331435 AFG3L1P 1 0 

LINC00671 0.000426575 G6PC 0.703641148 9.92E-82 

SPAAR 0.000479272 RECK 0.541849696 1.87E-42 

HOTAIR 0.000480838 HOXC11 0.691390398 7.69E-78 

HOTAIR 0.000480838 HOXC13 0.411470753 1.94E-23 

HOTAIR 0.000480838 HOXC6 0.479131856 2.77E-32 

LINC01176 0.00056786 NOD1 0.435177939 2.58E-26 

HAGLR 0.001295545 HOXD1 0.855324249 1.74E-155 

HAGLR 0.001295545 HOXD3 0.624327104 0 

HAGLR 0.001295545 HOXD4 0.729164875 0 

HAGLR 0.001295545 HOXD8 0.510689552 0 

RASGEF1B 0.001866563 RASGEF1B 1 0 

AP001189.3 0.001936226 LRRC32 0.819526937 5.87E-132 

RSRP1 0.002838905 RHD 0.448506225 4.93E-28 

ZNF337-AS1 0.02853277 NINL 0.521776524 0 

ZNF337-AS1 0.02853277 ZNF337 0.607919036 0 

 

 


