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ABSTRACT 
 

Background: The causative implications remain ambiguous. Consequently, this study aims to evaluate the 
putative causal relationship between gut microbiota and Esophageal cancer (EC). 
Methods: The genome-wide association study (GWAS) pertaining to the microbiome, derived from the 
MiBioGen consortium-which consolidates 18,340 samples across 24 population-based cohorts-was utilized as 
the exposure dataset. Employing the GWAS summary statistics specific to EC patients sourced from the GWAS 
Catalog and leveraging the two-sample Mendelian randomization (MR) methodology, the principal analytical 
method applied was the inverse variance weighted (IVW) technique. Cochran’s Q statistic was utilized to 
discern heterogeneity inherent in the data set. Subsequently, a reverse MR analysis was executed. 
Results: Findings derived from the IVW technique elucidated that the Family Porphyromonadaceae (P = 0.048) 
and Genus Candidatus Soleaferrea (P = 0.048) function as deterrents against EC development. In contrast, the 
Genus Catenibacterium (P = 0.044), Genus Eubacterium coprostanoligenes group (P = 0.038), Genus 
Marvinbryantia (P = 0.049), Genus Ruminococcaceae UCG010 (P = 0.034), Genus Ruminococcus1 (P = 0.047), 
and Genus Sutterella (P = 0.012) emerged as prospective risk contributors for EC. To assess reverse causal 
effect, we used EC as the exposure and the gut microbiota as the outcome, and this analysis revealed 
associations between EC and seven different types of gut microbiota. The robustness of the MR findings was 
substantiated through comprehensive heterogeneity and pleiotropy evaluations. 
Conclusions: This research identified certain microbial taxa as either protective or detrimental elements for EC, 
potentially offering valuable biomarkers for asymptomatic diagnosis and prospective therapeutic interventions 
for EC. 
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INTRODUCTION 
 

Esophageal carcinoma (EC) ranks as the seventh 

predominant malignancy globally, with roughly 604,100 

documented incidences in 2020, constituting 3.1% of all 

cancerous diagnoses [1]. Additionally, this neoplastic 

disease accounted for an estimated 544,000 fatalities in 

the aforementioned year, signifying 5.5% of all oncology-

associated mortalities, thereby placing it as the sixth 

leading etiology of cancer-induced death [2–4]. Globally, 

esophageal squamous cell carcinoma (ESCC) pre-

dominates as the principal histological subtype of 

esophageal malignancy, boasting an age-standardized 

incidence rate of 5.3 cases per 100,000 populaces [5, 6]. 

This incidence is quintuple that of esophageal adeno-

carcinoma (EAC), which has an age-standardized rate of 

0.9 cases per 100,000 individuals [7, 8]. Individuals 

diagnosed with EC commonly manifest with advanced 

local progression and are frequently administered 

neoadjuvant chemoradiotherapy (CRT) or perioperative 

chemotherapy concomitant with surgical excision [9, 10]. 

Nonetheless, despite the successful culmination of 

conventional multidisciplinary treatment, numerous 

patients experience disease recurrence and ultimately 

succumb to the ailment [11, 12]. Factors that have been 

consistently recognized or associated with ESCC 

comprise tobacco smoking, alcohol ingestion, opium 

utilization, exposure to air contaminants, and specific 

dietary habits, notably a diminished intake of fruits and 

vegetables alongside an increased consumption of red 

meats and pickled products [13–15]. The complex 

etiological landscape of the disease hints at the existence 

of previously undetected elements influencing its 

pathogenesis. Notably, among these prospective 

contributors, the role of the gut microbiome is receiving 

amplified scholarly scrutiny [16]. The inception of  

the Human Microbiome Project, coupled with the 

accessibility of cost-effective high-throughput sequencing, 

has markedly transformed the direct exploration of the 

human microbiome’s impact on human health and 

pathophysiological conditions. The human microbiota has 

been suggested to be involved in tumorigenesis and the 

responsiveness to oncological treatments. The abundance, 

heterogeneity, and precise constitution of microbiota 

across various organs could potentially influence the 

pathogenesis of EC. Multiple research endeavors have 

posited that an imbalance within the gut microbial 

ecosystem, termed dysbiosis, could be implicated in the 

initiation and progression of esophageal neoplasia [17–

23]. Individuals exhibiting reduced microbial richness in 

the esophagus and diminished salivary microbial diversity 

in China might be at an augmented risk of developing 

esophageal squamous dysplasia (a precursor to EC) and 

EC, correspondingly [24, 25]. An augmented abundance 

of Clostridiales and Erysipelotrichales in the gastric 

corpus may be implicated in the pathogenesis of 

esophageal squamous dysplasia and EC within the Iranian 

population [26]. Such discoveries have catalyzed inquiries 

into the nuanced interplay between the gut microbiome 

and EC. Regrettably, the determinations of the majority of 

contemporary observational research chiefly hinge upon 

the evaluation of the composition and alterations in gut 

microbiota derived from patients’ stool samples. 

Conventional observational research is constrained by 

intrinsic limitations, encompassing environmental con-

founders, selection biases, and the potential for reverse 

causality. While randomized controlled trials (RCTs) 

remain the benchmark for establishing causation, the vast 

multitude of gut microbial species combined with the 

extended latency from microbial dysbiosis to oncogenesis 

render RCTs challenging to implement within an 

authentic clinical context. In summation, the nexus 

between gut microbiota and Esophageal carcinoma 

continues to warrant further clarification. 

 

Mendelian randomization (MR) serves as a robust 

approach for deducing causal relationships, employing 

genetic variants, such as Single Nucleotide Poly-

morphisms (SNP), as instrumental variables (IVs) [27]. 

Due to the stochastic allocation of alleles from parents to 

their descendants, coupled with their autonomous 

assortment and the postnatal stability of genotypes, MR is 

often likened to a quintessential RCT. The inherent 

benefits of MR, including the mitigation of confounding 

variables and the elimination of potential reverse 

causality, furnish a potent mechanism for deducing causal 

relationships in observational research [28–30]. Within 

this framework, MR presents an innovative methodology 

for investigating the putative causal nexus between gut 

microbiota and EC. In this investigation, two-sample MR 

analyses were conducted utilizing summary GWAS 

datasets to evaluate the potential causal linkage between 

gut microbiota and EC. 

 

Study design 

 

The current MR study was executed and chronicled in 

accordance with the STROBE-MR guidelines. These 

guidelines are formulated to enhance the reporting rigor 

of MR research [31, 32]. The schematic representation 

of this study can be found in Figure 1. Credible 

outcomes hinge on the adherence to the following three 

foundational assumptions of Mendelian randomization 

analysis [33]. 

 

MATERIALS AND METHODS 
 

Gut microbiome data sources 

 

SNPs pertinent to the human gut microbiome 

composition were delineated as IVs from a GWAS 

dataset sourced from the international consortium 
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MiBioGen. The MiBioGen Consortium, an international 

collaboration, is committed to advancing knowledge 

regarding the genetic architecture of gut microbiota. 

Data has been gathered from 24 population-based 

cohorts, cumulatively comprising 18,340 participants. 

In each respective cohort, the gut microbiota was 

analyzed using 16S rRNA sequencing methods, and the 

participants were genotyped utilizing whole-genome 

SNP arrays. The reference panel HRC 1.0 or 1.1 was 

utilized for the imputation of genotyping. Subsequently, 

factors including age, sex, technical variables, and 

genetic principal components were considered. An 

association analysis was subsequently conducted 

employing the Spearman correlation method. In this 

research, instrumental variables (IVs) were chosen from 

the genus to the phylum level of gut microbiota (GM) 

taxa. For an in-depth understanding, one is directed to 

consult the primary publications [34]. In the microbiota-

GWAS, 122,110 variant sites spanning 211 taxa were 

identified. However, due to the presence of 12 

unidentified genera and 3 unidentified families, a final 

total of 196 taxa were incorporated into the subsequent 

analysis. 

 

Esophageal cancer  

 

The summary statistics pertaining to esophageal  

cancer were sourced from relevant studies listed in the 

GWAS Catalog (https://www.ebi.ac.uk/gwas/) under 

the identifier GCST90018841. This dataset comprised 

998 cases of European descent and 475,308 controls, 

also of European ancestry [35]. 

 

Selection of SNPs 

 

To confirm the integrity and precision of the 

determinations regarding the causative association 

between the gut microbiome and the susceptibility to 

esophageal cancer, and to safeguard the data’ robustness 

and credibility, rigorous quality control procedures are 

imperative during the selection of the most suitable 

instrumental variables. The selection criteria of IVs 

were following: Prior literature was consulted to 

establish a more encompassing threshold (p < 1 × 10–5). 

Consequently, the threshold of p < 1 × 10–5 was 

employed due to the limited availability of suitable 

instrumental variables at p < 5 × 10–8 [36, 37]. Data from 

the 1000 Genomes project pertaining to European 

samples were utilized to calculate the linkage 

disequilibrium (LD) for SNPs with criteria set at 

R2 < 0.001 and a clumping distance of 10,000 kb. SNPs 

exhibiting the most significant P-values were sub-

sequently retained for further analysis. In instances 

involving palindromic SNPs, allele frequencies were 

employed to deduce positive strand alleles. In the 

comparative analysis, alleles were cross-referenced with 

the Genome Reference Consortium Human Build 38, 

leading to the exclusion of ambiguous and redundant 

 

 
 

Figure 1. The study design of the present Mendelian randomization study of the associations of the gut microbiota and 
esophageal cancer risk. 
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SNPs. In an effort to diminish heterogeneity and 

preclude pleiotropic influences, the MR Pleiotropy 

Residual Sum and Outlier (MR-PRESSO) approaches 

were utilized to pinpoint horizontal pleiotropic 

anomalies. We conducted a query on the PhenoScanner 

website to identify additional phenotypes linked to 

esophageal cancer-related SNPs. Subsequently, SNPs 

correlated with potential confounders, such as gastric 

cancer, biliary tract cancer, ovarian cancer, and so forth, 

were excluded from the analysis. Ultimately, we 

conducted an assessment of the strength of each 

individual IV via the F-statistics, denoted as F=β2 

exposure/SE2 exposure. Additionally, an aggregate F-

statistic was determined employing the subsequent 

formula: F=(n−k−1)R2/k(1−R2). Conventionally, an F-

statistic greater than 10 was designated as the 

benchmark for robust IVs. Those not meeting this 

criterion were regarded as having a limited association 

with the exposure and were subsequently excluded [38]. 

 

MR analysis 

 

The statistical analysis was conducted using the R 

software (Version 4.2.2) complemented by the 

TwosampleMR package (Version 0.56). The MR study 

was employed to evaluate the potential causal 

relationships between 196 specific microbial taxa and 

esophageal cancer. Multiple methodologies were 

employed in our analysis, encompassing inverse 

variance weighting (IVW), weighted median, MR-

Egger, weighted mode, and simple mode techniques. 

Given that the IVW approach yields the most accurate 

causal estimations, it was designated as the principal 

analytical technique for this MR investigation [39]. The 

MR-Egger method discerns horizontal pleiotropy by 

evaluating the intercept. An intercept yielding a p-value 

below 0.05 suggests the existence of pleiotropy [40]. 

The heterogeneity was assessed using Cochran’s Q test. 

The MR-PRESSO global test was employed to mitigate 

horizontal pleiotropy by identifying and excluding 

definitive outliers [41–43]. Additionally, to pinpoint 

SNPs that might exhibit heterogeneity, a “leave-one-

out” procedure was executed, wherein each SNP was 

systematically excluded in turn. 

 

Reverse MR analysis 

 

To explore the putative causal link between esophageal 

cancer and diverse bacteria, we undertook a reverse MR 

study. SNPs meeting the locus-specific significance 

criterion (P < 1.0×10–5) were identified as potential IVs. 

In this framework, esophageal cancer was designated as 

the exposure, while the gut microbiota composition was 
considered the outcome. Instrumental variables for this 

investigation were constituted by SNPs associated with 

esophageal cancer. 

Ethical approval 

 

This research utilized publicly accessible data. Each 

individual study within the GWAS was sanctioned by 

its respective Institutional Review Board, and informed 

consent was secured either directly from the participants 

or through a designated caregiver, legal guardian, or 

equivalent representative. 

 

Availability of data and materials 

 

https://mrcieu.github.io/TwoSampleMR/, https://github. 

com/rondolab/MR-PRESSO. 

 

Consent for publication 

 

Consensus among all authors was achieved regarding 

the manuscript. 

 

RESULTS 
 

Genetic instruments for gut microbiome 

 

In the research undertaken, 196 bacterial characteristics 

encompassing five hierarchical biological levels 

(namely, phylum, class, order, family, and genus) were 

analyzed. Comprehensive data pertaining to the 

concluding SNPs associated with each bacterial trait can 

be found in Supplementary Tables 1, 2. F values 

exceeding 10 suggest an absence of any weak 

instrument bias. For all MR results, we conducted 

comprehensive sensitivity analyses to investigate 

potential heterogeneity, as evidenced by Cochran’s Q 

statistic, and to assess pleiotropic influences using both 

MR-Egger regression and MR-PRESSO techniques. 

 

Causal effect of gut microbiota on esophageal cancer 

 

An MR analysis was performed to ascertain the potential 

causal linkage between gut microbiota and esophageal 

cancer. Detailed findings are presented in Table 1. 

Through the application of the IVW analytical approach, 

we determined that the Family Streptococcaceae (OR 

0.65, 95% CI 0.42–0.99, P = 0.048) and Genus 

Candidatus Soleaferrea(OR 0.78, 95% CI 0.61–0.99, 

P = 0.048) demonstrated an inverse association with 

susceptibility to esophageal cancer. In contrast, positive 

correlations with esophageal cancer risk were evident for 

the Genus Catenibacterium (OR=1.31, 95% CI:1.01–

1.71, P=0.044), Genus Eubacterium coprostanoligenes 

(OR=1.43, 95% CI:1.02–2.00, P=0.038), Genus 

Marvinbryantia (OR=1.41, 95% CI:1.01–1.97, P=0.049), 

Genus Ruminococcaceae UCG010 (OR=1.59, 95% 

CI:1.03–2.46, P=0.034), Genus Ruminococcus1 

(OR=1.46, 95% CI:1.01–2.13, P=0.047), and Genus 

Sutterella (OR=1.51, 95% CI:1.09–2.10, P=0.012). 
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Table 1. Summary results of MR (target gut microbiome on esophageal cancer). 

Taxa Exposure Outcome Nsnp Methods Beta SE 
OR 

(95%CI) 

P-

value 

Heterogeneity Horizontal pleiotrop 

Cochran’s 

Q 
P-value 

Egger 

intercept P 

MR-

PRESSO 

P 

Family 
Porphyromonadac

eae 

Esophageal 

cancer 
9 

Inverse variance 

weighted 
-0.432 0.219 

0.65  

(0.42-0.99) 
0.048 6.708 0.568 0.279 0.6 

Genus 
Candidatus 

Soleaferrea 

Esophageal 

cancer 
11 

Inverse variance 

weighted 
-0.248 0.125 

0.78  

(0.61-0.99) 
0.048 10.878 0.367 0.594 0.38 

Genus Catenibacterium 
Esophageal 

cancer 
5 

Inverse variance 

weighted 
0.196 0.134 

1.31  

(1.01- 1.71) 
0.044 1.795 0.773 0.924 0.78 

Genus 
Eubacterium 

coprostanoligenes 

Esophageal 

cancer 
13 

Inverse variance 

weighted 
0.355 0.171 

1.43  

(1.02-2.00) 
0.038 9.402 0.668 0.718 0.68 

Genus Marvinbryantia 
Esophageal 

cancer 
10 

Inverse variance 

weighted 
0.340 0.173 

1.41  

(1.01-1.97) 
0.049 3.315 0.950 0.813 0.97 

Genus 
Ruminococcaceae 

UCG010 

Esophageal 

cancer 
6 

Inverse variance 

weighted 
0.466 0.220 

1.59  

(1.03- 2.46) 
0.034 2.971 0.704 0.863 0.69 

Genus Ruminococcus1 
Esophageal 

cancer 
10 

Inverse variance 

weighted 
0.381 0.192 

1.46  

(1.01-2.13) 
0.047 7.057 0.631 0.090 0.62 

Genus Sutterella 
Esophageal 

cancer 
12 

Inverse variance 

weighted 
0.414 0.166 

1.51  

(1.09-2.10) 
0.012 6.918 0.805 0.116 0.93 

 

(Figure 2) Utilizing both the IVW test and MR-Egger, the 

outcomes of Cochran’s Q test revealed an absence of 

notable heterogeneity between the gut microbiome and 

esophageal cancer. The MR-Egger regression analysis 

provided no indications of horizontal pleiotropy.  

Furthermore, the MR-PRESSO evaluation identified no 

significant outliers, and the leave-one-out analysis 

corroborated the robustness of the data (Table 1 and 

Supplementary Table 2 and Figures 2, 3). 

Causal effect of esophageal cancer on gut microbiota 

 

In the reverse direction MR analysis, we used 

Esophageal cancer as the exposure and gut microbiota 

as the outcome to assess any reverse causation effects. 

After analysis using the MR method, Esophageal cancer 

had a causal effect on one Class, one Order and five 

Genera. Through IVW, the Class Negativicutes 

(OR=0.97, 95% CI:0.94–0.99, P=0.048), Order 

 

 
 

Figure 2. (A) Causal effect of gut microbiota with Esophageal cancer Schematic representation of the MR analysis results. (B) Forest plot of 

the MR analysis results.  
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Selenomonadales (OR=0.97, 95% CI:0.94–0.99, 

P=0.048), Genus Butyricicoccus (OR=0.96, 95% 

CI:0.93–0.99, P=0.010), Genus Eggerthella (OR=0.94, 

95% CI:0.88–0.99, P=0.029) and Genus Eubacterium 

Xylanophilum Group (OR=0.95, 95% CI:0.92–0.99, 

P=0.008) were down-regulated after the onset  

of Esophageal cancer. The Genus Intestinimonas 

(OR=1.04, 95% CI:1.01–1.08, P=0.032) and Genus 

Ruminococcaceae UCG003 (OR=1.03, 95% CI:1.01–

1.07, P=0.042) were up-regulated after the onset of 

Esophageal cancer. Among the IVs, we detected neither 

weak instrument bias nor notable heterogeneity statistics. 

Additionally, no evidence of horizontal pleiotropy was 

observed between the IVs and the gut microbiome. The 

MR-PRESSO assessment revealed an absence of 

significant outliers. Moreover, the robustness of the data 

was corroborated through the leave-one-out analysis 

(Table 2 and Supplementary Tables 3, 4 and Figures 4–6). 

 

DISCUSSION 
 

Our research is the inaugural comprehensive bidirectional 

MR analysis investigating the potential causal association 

between gut microbiota and esophageal cancer. Utilizing 

GWAS summary data, we corroborated a linkage between 

esophageal cancer and the gut microbiome, and our 

findings align congruently with existing scholarly 

literature. Our study discerned a bidirectional interaction 

between esophageal cancer and the gut microbiome.  

We identified specific risk factors, including the  

Genera Catenibacterium, Eubacterium coprostanoligenes 

group, Marvinbryantia, Ruminococcaceae UCG010, 

Ruminococcus1, and Sutterella. In contrast, protective 

factors, such as the Family Porphyromonadaceae and the 

genus Candidatus Soleaferrea, were observed to be linked 

with esophageal cancer within the gut microbiome. The 

emergence of esophageal cancer manifested alterations  

in the gut microbiome composition. For instance,  

an elevation in the concentrations of the genera 

Intestinimonas and Ruminococcaceae UCG003 was 

noted, while there was a discernible decrease in the 

relative abundance of the Class Negativicutes and  

the genera Butyricicoccus, Eggerthella, Eubacterium 
Xylanophilum Group, coupled with the order 

Selenomonadales. EC represents a virulent neoplasia 

characterized by a bleak prognostic outcome.  

Microbiome research represents an emergent and 

swiftly progressing domain within oncological studies 

 

 
 

Figure 3. (A) Forest plot of the Reverse MR analysis results. (B) Causal effect of Esophageal cancer with gut microbiota Schematic 

representation of the Reverse MR analysis results. OR odds ratio, CI confidence interval, IVW inverse variance weighted method, Significant 
threshold was set at p-value <0.05 for the Inverse Variance Weighted method (IVW). 
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Table 2. Summary results of bidirectional MR (esophageal cancer on target gut microbiome). 

Exposure  Taxa Outcome Nsnp Methods Beta SE 
OR 

(95%CI) 
P-value 

Heterogeneity Horizontal pleiotrop 

Cochran’s 

Q 
P-value 

Egger 

intercept 

P 

MR-PRESSO 

P 

Esophageal cancer Class Negativicutes 18 
Inverse variance 

weighted 
-0.029 0.014 

0.97 (0.94-

0.99) 
0.048 15.619 0.550 0.611 0.604 

Esophageal cancer Order Selenomonadales 18 
Inverse variance 

weighted 
-0.029 0.014 

0.97 (0.94-

0.99) 
0.048 15.619 0.550 0.611 0.38 

Esophageal cancer Genus Butyricicoccus 18 
Inverse variance 

weighted 
-0.039 0.015 

0.96 (0.93-

0.99) 
0.010 14.124 0.658 0.464 0.78 

Esophageal cancer Genus Eggerthella 16 
Inverse variance 

weighted 
-0.064 0.029 

0.94 (0.88-

0.99) 
0.029 17.484 0.290 0.162 0.68 

Esophageal cancer Genus 

Eubacterium 

Xylanophilum 

Group 

17 
Inverse variance 

weighted 
-0.046 0.017 

0.95 (0.92-

0.99) 
0.008 9.596 0.886 0.599 0.97 

Esophageal cancer Genus Intestinimonas 18 
Inverse variance 

weighted 
0.038 0.018 

1.04 (1.01-

1.08) 
0.032 15.844 0.534 0.270 0.69 

Esophageal cancer Genus 
Ruminococcaceae 

UCG003 
18 

Inverse variance 

weighted 
0.034 0.016 

1.03 (1.01-

1.07) 
0.042 15.184 0.582 0.481 0.62 

 

pertaining to humans [44, 45]. In recent academic 

epochs, novel research has enriched our understanding of 

the association between shifts in the gut microbiota  

and the onset of esophageal carcinogenesis [46]. A 

myriad of determinants, encompassing dietary practices, 

along with antacid and antibiotic utilization, have  

been demonstrably linked to modulations in the 

esophageal microbiome. Inversely, the amplification and 

heterogeneity of the esophageal microbiome can 

reciprocally affect its functional dynamics [47–50]. 

Multiple academic inquiries have discerned a pronounced 

presence of Campylobacter in BE patients, an 

observation absent in normative subjects [51–53].  

BE markedly elevates the susceptibility to EAC 

development, with a risk amplification up to 30-fold 

relative to individuals devoid of BE [54]. Shao et al. 

delineated a diminished microbial diversity in ESCC 

specimens in comparison to non-neoplastic tissues, as 

ascertained through 16S rDNA sequencing. Notably,  

they observed a pronounced augmentation in the 

prevalence of Fusobacterium and a concomitant 

reduction in Streptococcus presence [55]. Li et al. 

elucidated a marked diminution in the prevalence of 

Streptococcus concomitant with an enhanced presence of 

Neisseria and Porphyromonas in the course of ESCC 

progression [56]. Such incongruities might stem from 

variations in dietary patterns, geographical locales, and 

disparities in the patient cohorts encompassed by the 

individual studies. Nonetheless, these investigations, in 

aggregate, underscore the prevailing perturbations in the 

microbial homeostasis of the esophagus among ESCC 

patients [57–62]. 

 

Alterations in both the composition and the prevalence 

of microbiota within the esophagus may contribute to 

the pathogenesis of EC through various mechanisms 

[63, 64]. The dysregulation of interactions between the 

esophageal microbiota and immune cells has been 

implicated in the modulation of multiple signaling 

pathways, which are known to play a significant role in 

the etiology of EC [65]. Dysfunctional activation  

of the Wnt/β-catenin signaling pathway has been 

associated with both the oncogenesis and therapeutic 

resistance observed in EC [66]. Fusobacterium nucleatum 

facilitates the progression and chemotherapeutic 

resistance of esophageal squamous cell carcinoma by 

augmenting the release of senescence-associated 

secretory phenotype induced by chemotherapy, through 

the activation of the DNA damage response  

pathway. 

 

Our research possesses distinct strengths. To the best 

of our understanding, this constitutes the inaugural 

MR analysis probing the potential causal association 

between the gut microbiome and esophageal cancer. 

The MR methodology intrinsically reduces 

susceptibilities to disruptions from lingering 

confounders, potentially presenting a more steadfast 

paradigm in comparison to traditional observational 

approaches. However, in light of the prevailing 

uncertainties surrounding the exact biological 

functions of certain genetic variants, the possible 

effects of horizontal pleiotropy cannot be fully 

negated. As such, it is imperative to interpret our 

results with prudence. Moreover, we conducted an in-

depth examination of the causal relationships of 

individual taxa with esophageal cancer, encompassing 

hierarchical levels from phyla to genera. This 

exploration offers innovative insights into the intricate 

mechanisms associated with the gut microbiome and 
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Figure 4. Scatter plots of significant causality of the GM and esophageal cancer. (A–H) Scatter plot of the effect size and 95% 

confidence interval of each SNP on GM and Esophageal cancer risk. The horizontal axis reflects genetic effect of each SNP on GM. The vertical 
axis represents the genetic effect of each SNP on Esophageal cancer risk. Leave-one-out analysis for the impact of individual SNPs on the 
association between GM and Esophageal cancer risk. (I–L) By leaving out exactly one SNP, it demonstrates how each individual SNP 
influences the overall estimate. 
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Figure 5. (A–D) Leave-one-out analysis for the impact of individual SNPs on the association between GM and Esophageal cancer risk. (E–K) In 

reverse MR analysis, The scatter plots for association between Esophageal cancer and gut microbiota. (L) In reverse MR analysis, Plots for 
“leave-one-out” analysis for causal effect of Esophageal cancer on gut microbiota risk. 
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Figure 6. In reverse MR analysis, (A–F) Plots for “leave-one-out” analysis for causal effect of Esophageal cancer on gut microbiota risk.  
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suggests potential therapeutic strategies centered on 

microbiome modulation. However, inherent constraints 

persist in our analysis. It is important to note that, despite 

our examination of prevalent gut microbiota, the vast and 

diverse nature of the gut microbiome means that our 

dataset may yet have its limitations. Additionally, our 

research focused exclusively on European populations 

and did not differentiate based on gender. Consequently, 

extrapolating our conclusions to broader populations 

requires judicious consideration. Notwithstanding its 

constraints, this study furnishes salient insights into the 

causative associations between gut microbiota and 

esophageal cancer, thus establishing a foundational 

premise for ensuing explorations into the intrinsic 

molecular dynamics. 

 

CONCLUSIONS 
 

In this MR analysis, we present an inaugural thorough 

examination of the causal relationships between gut 

microbiota and esophageal cancer. Our results offer 

innovative understandings concerning the prophylaxis, 

disease progression, and therapeutic strategies for 

esophageal cancer by focusing on distinct bacterial 

taxa. Subsequent research is imperative to elucidate 

the precise mechanistic interplay between enteric 

microbiota and esophageal cancer associations. 

Nonetheless, additional investigations are requisite to 

ascertain the underlying mechanism delineating the 

association between gut microbiota and esophageal 

cancer. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. Instrumental variables (selected SNPs) used in MR analysis of the association between 
gut microbiota and esophageal cancer.  

 

Supplementary Table 2. Instrumental variables (selected SNPs) used in bidirectional MR analysis of the 
association between esophageal cancer and gut microbiota.  

 

Supplementary Table 3. Detailed summary of MR results (target gut microbiome on esophageal cancer). 

 

Supplementary Table 4. Detailed summary of reverse MR results (esophageal cancer on target gut microbiome). 
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