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INTRODUCTION 
 

Aging is closely linked to non-alcoholic fatty liver 

disease (NAFLD) and insulin resistance, primarily due 

to the compromised homeostatic capacity resulting from 

the growing elderly population [1]. Insulin resistance 

denotes a cellular state where responses to insulin, 

crucial for glucose uptake, diminish. Consequently, 

insulin fails to facilitate glucose uptake, causing 

hyperglycemia and hyperinsulinemia, prompting 

increased insulin secretion by pancreatic β-cells to 

regulate glucose levels. Diabetic individuals produce 

excessive glucose and triglycerides (TG), contributing 
to hyperglycemia and hypertriglyceridemia, respectively 

[2]. The disruption in balancing the production and 

breakdown of TG-containing lipoproteins, particularly 
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ABSTRACT 
 

FoxO6, an identified factor, induces hyperlipidemia and hepatic steatosis during aging by activating hepatic 
lipoprotein secretion and lipogenesis leading to increased ApoC3 concentrations in the bloodstream. However, 
the intricate mechanisms underlying hepatic steatosis induced by elevated FoxO6 under hyperglycemic 
conditions remain intricate and require further elucidation. 
In order to delineate the regulatory pathway involving ApoC3 controlled by FoxO6 and its resultant functional 
impacts, we employed a spectrum of models including liver cell cultures, aged rats subjected to HFD, transgenic 
mice overexpressing FoxO6 (FoxO6-Tg), and FoxO6 knockout mice (FoxO6-KO). 
Our findings indicate that FoxO6 triggered ApoC3-driven lipid accumulation in the livers of aged rats on an HFD 
and in FoxO6-Tg, consequently leading to hepatic steatosis and hyperglycemia. Conversely, the absence of 
FoxO6 attenuated the expression of genes involved in lipogenesis, resulting in diminished hepatic lipid 
accumulation and mitigated hyperlipidemia in murine models. Additionally, the upregulation of FoxO6 due to 
elevated glucose levels led to increased ApoC3 expression, consequently instigating cellular triglyceride 
mediated lipid accumulation. The transcriptional activation of FoxO6 induced by both the HFD and high glucose 
levels resulted in hepatic steatosis by upregulating ApoC3 and genes associated with gluconeogenesis in aged 
rats and liver cell cultures. 
Our conclusions indicate that the upregulation of ApoC3 by FoxO6 promotes the development of hyperlipidemia, 
hyperglycemia, and hepatic steatosis in vivo, and in vitro. Taken together, our findings underscore the 
significance of FoxO6 in driving hyperlipidemia and hepatic steatosis specifically under hyperglycemic states by 
enhancing the expression of ApoC3 in aged rats. 
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very low-density lipoproteins (VLDLs), leads to 

hypertriglyceridemia. Age-related NAFLD amplifies 

mortality risks among the elderly [3]. Given the 

projected rise in the elderly population, investigating the 

correlation between hepatic steatosis and aging becomes 

imperative. Understanding how hyperglycemia triggers 

age-related hepatic steatosis necessitates further 

exploration. NAFLD is a liver pathology characterized 

by the accumulation of TG within hepatocytes and can 

progress to non-alcoholic steatohepatitis (NASH) [4]. 

Excessive accumulation of lipids in the liver through the 

advancement of hepatic steatosis has been associated 

with hyperglycemia. 

 

The forkhead transcription factor O (FoxO) proteins, 

including FoxO1/3/4/6 in mammals, constitute an 

essential group [5]. Insulin signaling induces FoxO 

inactivation by phosphorylating FoxO, causing its 

translocation from the nucleus to the cytosol [6–8]. 

Furthermore, increased levels of reactive oxygen 

species (ROS) and fatty acids promote FoxO proteins 

through the JNK signaling pathway [9, 10]. Studies 

have indicated that constitutively active FoxO1 

upregulates the transcription of the lipogenic sterol 

regulatory element binding protein 1c (SREBP-1c) 

gene, leading to accumulation of TG in the liver [11]. 

Another investigation reported FoxO1’s involvement in 

VLDL production and associated TG in the liver, 

influencing hypertriglyceridemia by modulating the 

microsomal TG transfer protein (MTP) in mice [12]. 

Intriguingly, FoxO1 adjusts fat cell differentiation 

through the peroxisome proliferator-activated receptor γ 

(PPARγ) [13] and can bind to the PPARγ promoter, 

suppressing its transcription [14]. In contrast, FoxO6 

notably upregulates PPARγ expression under insulin-

resistant conditions in the liver of diabetic db/db mice, 

consequently stimulating liver lipogenesis and 

increasing fat content [15]. Hepatic FoxO1, associated 

with insulin resistance, plays a crucial role in impairing 

ApoC3 production and contributing to hyper-

triglyceridemia in obese mice [16]. Additionally, genes 

encoding ApoA1/C3/A4/A5 have been identified as risk 

alleles associated with the occurrence of hyper-

triglyceridemia in humans [17, 18]. Presently, the 

precise mechanistic relationship between FoxO6 and 

ApoC3 remains incompletely understood. Additional 

studies are necessary to elucidate the roles of FoxO6 

and ApoC3 in the regulation of liver lipid metabolism, 

particularly in aged rats fed a high-fat diet (HFD). 

 

Apolipoprotein C3 (ApoC3) is an apolipoprotein found 

within the spectrum of high-density lipoproteins (HDL), 

VLDL, and chylomicrons circulating in the bloodstream 
[19]. Primarily synthesized in the liver, with a smaller 

production in the intestine, ApoC3 significantly 

influences TG metabolism through various signaling 

pathways. Acting as an inhibitor, ApoC3 targets key 

enzymes like lipoprotein lipase (LPL) and hepatic lipase 

involved in TG hydrolysis within VLDL and 

chylomicrons post-absorption stages [20–22]. Increased 

ApoC3 levels impede liver uptake and the clearance of 

TG-containing lipoprotein remnants [23, 24]. This 

regulatory action of ApoC3 on lipoprotein metabolism 

is mediated by low-density lipoprotein (LDL) receptor-

related pathways, independent of LPL levels [25]. In 

addition to its extracellular functions, ApoC3 also 

modulates increased VLDL-TG secretion within liver 

cells [26–29]. Transgenic mice expressing ApoC3 

exhibit persistent hypertriglyceridemia from birth, while 

ApoC3 deficiency in mice leads to enhanced TG 

hydrolysis and clearance, resulting in reduced 

circulating TG levels [30–33]. Similarly, individuals 

with ApoC3 mutations display lowered plasma TG 

concentrations and reduced risk of coronary artery 

disease [34, 35]. Studies involving non-human primates 

and patients with familial chylomicronemia demonstrate 

that diminishing plasma ApoC3 levels using antisense 

oligonucleotides significantly decreases plasma TG 

levels [36, 37]. This collective evidence highlights the 

connection both ApoC3 and hypertriglyceridemia, 

positioning ApoC3 as a potential therapeutic mark for 

managing elevated TG levels [38, 39]. Additionally, 

ApoC3 expression induces inflammation in endothelial 

cells [40] and adipose tissue [41]. Elevated ApoC3 

levels have been associated with various disorders, 

including metabolic syndrome [42] and insulin 

resistance [43, 44] in vivo. 

 

In our investigation, we utilized aged rats fed an HFD to 

explore the relationship between ApoC3 expression and 

FoxO6. We observed that HFD-induced FoxO6 activity 

in aged rats led to an increase in hepatic ApoC3 

expression. Furthermore, when cells were exposed to 

high-glucose (HG) treatment, this effect was 

heightened. The heightened expression of FoxO6 in the 

liver of aged rats contributed to dysfunctional TG 

metabolism. Changes in lipids have been associated 

with various metabolic diseases [45]. Given that the 

liver primarily functions as a metabolic organ 

characterized by elevated basal energy consumption and 

a reliance on fatty acid oxidation as its primary energy 

source [46, 47], the disruption in fatty acid oxidation 

has been proposed to drive abnormal TG accumulation, 

leading to lipotoxicity and the progression of liver 

diseases. In this context, our investigation aimed to 

examine the relationship between age-related hepatic 

steatosis and hyperglycemia, alongside studying how 

FoxO6 regulates ApoC3 during hyperglycemic 

conditions in both liver tissues and cells. Our objective 
is to gain a deeper understanding of the fundamental 

molecular mechanisms underlying hyperlipidemia in 

aged rats fed a high-fat diet. 
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RESULTS 
 

Effects of HFD on serum lipids, glucose, and insulin 

during aging 

 

The standard plasma metabolites were assessed to 

evaluate the effects of HFD in the context of aging. 

Previous reports have highlighted changes in body 

weight and food intake throughout the course of the 

experiment [48]. 

 

The levels of glucose and insulin displayed notable 

increases in the aged groups compared to the younger 

groups, and notably, these levels were even higher in the 

aged rats subjected to an HFD compared to the non-HFD 

aged rats (Figure 1A, 1B). The Homeostatic Model 

Assessment for Insulin Resistance (HOMA-IR) data 

depicted in Figure 1C exhibited significantly elevated 

scores in the HFD-aged rat group compared to the non-

HFD aged rats, indicating an exacerbation of HFD-

induced insulin resistance through HOMA-IR. However, 

plasma levels of free fatty acids (FFA) and TG were 

markedly higher in the aged groups compared to the 

younger groups, with further significant elevations 

observed in the HFD-aged groups relative to the non-HFD 

aged groups (Figure 1D, 1E). In addition, plasma LDL 

levels were significantly increased in the aged groups 

when compared to the younger groups, and notably higher 

in the HFD-aged groups compared to the non-HFD aged 

groups (Figure 1G). However, HDL levels did not exhibit 

significant changes in the HFD-fed aged groups compared 

to the non-HFD aged groups (Figure 1F). 

 

Effects of FoxO6 on ApoC3-mediated hyperlipidemia 

in HFD-fed aged rats 

 

Insulin signaling through Akt primarily inhibits FoxO6 

activity. Dephosphorylation at Thr26 and Ser184 sites in 

 

 
 

Figure 1. Aging-related serum changes in insulin resistance and lipogenesis. (A) Glucose levels, (B) insulin levels, and (C) HOMA-IR 

scores were determined. (D) FFA (free fatty acid), (E) TG, (F) HDL, and (G) LDL levels in the serum of HFD-fed aged rats (each n = 6). Results 
of one-factor ANOVA: *p < 0.05, **p < 0.01 vs. young rats; #p < 0.05 vs. old rats. 
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FoxO6 enhances its activity, consequently leading to 

increased levels of hyperglycemia [49]. Our data 

indicate that there is dephosphorylation of FoxO6 in the 

livers of aged rats (Figure 2A), while simultaneously 

observing increased FoxO6 expression levels, as 

evidenced by immunohistochemical staining (Figure 

2B). Genes associated with impaired lipoprotein 

metabolism such as ApoC3, ApoB, MTP, and ApoA1 

 

 
 

Figure 2. Aging-related increase in hyperlipidemia through FoxO6-induced apolipoprotein expression. (A) Western blotting 
was performed to investigate the protein expression levels of p-FoxO6 and FoxO6 in the liver of aged rats. TFIIB was the loading control of 
the nuclear fractions. Results are representative of three independent experiments. Bars in the densitometry data represent the mean ± 
S.E., and significance was determined using one-factor ANOVA: #p < 0.05, ##p < 0.01, ###p < 0.001 vs. Young; ***p < 0.001 vs. HFD-Young; $$p 
< 0.01 vs. Old. (B) Immunohistochemical staining for FoxO6 in the liver of aged rats. Scale bar: 100 μm. (C) Western blotting was performed 
to investigate the protein levels of ApoC3 and ApoB in the liver of aged rats. β-actin was the loading control of the cytosolic fraction. Bars in 
the densitometry data represent the mean ± S.E., and significance was determined using one-factor ANOVA: ##p < 0.01, ###p < 0.001 vs. 
Young; ***p < 0.001 vs. HFD-Young; $$$p < 0.001 vs. Old. (D) Real-time PCR analyses were performed to measure the mRNA levels of FoxO6, 
MTP, ApoC3, ApoB, and ApoA1. Results of one-factor ANOVA: *p < 0.05, **p < 0.01, ***p < 0.001 vs. Young; #p < 0.05, ##p < 0.01 vs. Young-
HFD. (E) Hepatic TG in HFD-fed aged rats. Results of one-factor ANOVA *p < 0.05, **p < 0.01 vs. Young; #p < 0.05 vs. Old. (F) Real-time PCR 
analyses were performed for measuring the mRNA levels of PPARγ, ACC, and FAS. Results of one-factor ANOVA: *p < 0.05, **p < 0.01 vs. 
Young; #p < 0.05, ##p < 0.01 vs. Young-HFD. (G) G6Pase and PEPCK mRNA levels (gluconeogenesis-related genes) in the livers of HFD-fed 
aged rats. Results of one-factor ANOVA: *p < 0.05 vs. Young; #p < 0.05, ##p < 0.01 vs. Young-HFD. (H) Plasma levels of ApoC3 were 
determined. Results of one-factor ANOVA: **p < 0.01 vs. Young; #p < 0.05 vs. Young-HFD. 
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were detected in the aged groups fed an HFD. Our 

investigation aimed to assess the impact of ApoC3 and 

ApoB during the aging process by examining whether the 

HFD significantly elevated the levels of ApoC3 and 

ApoB in aged rats (Figure 2C). Additionally, we assessed 

lipoprotein metabolism using real-time PCR. As 

anticipated, the levels of MTP, ApoC3, and ApoB were 

elevated in aged rats, with further increases observed in 

the aged rats subjected to the HFD (Figure 2D). 

 

To delineate the influence of an HFD on lipid 

metabolism associated with aging, we quantified hepatic 

TG content and assessed the expression of lipogenic 

genes. Aged livers exhibited elevated TG levels 

compared to their young counterparts on a normal diet, 

with a further substantial increase observed in HFD-fed 

aged livers (Figure 2E). Histological examination via 

H&E staining demonstrated pronounced lipid droplet 

accumulation in the livers of aged rats, a phenomenon 

exacerbated in HFD-fed aged rat livers (Supplementary 

Figure 1). Concurrently, expression analysis of genes 

involved in lipogenesis, including PPARγ, ACC, and 

FAS, revealed significant upregulation in aged rat 

livers compared to young counterparts, further 

amplified in both young and aged rats subjected to the 

HFD (Figure 2F). Additionally, the HFD-mediated 

aging process corresponded to heightened expression of 

gluconeogenesis-associated genes, such as PEPCK and 

G6Pase (Figure 2G). Remarkably, there was a notable 

increase in plasma ApoC3 levels in HFD-fed aged  

rats (Figure 2H). These observations underscore an 

escalation in hepatic triglyceride content and 

gluconeogenesis during the aging process. Furthermore, 

HFD-fed aged rats displayed increased vulnerability to 

lipid accumulation and hyperglycemia, potentially 

influenced by the activation of FoxO6, alterations in 

lipoprotein metabolism, and modulation of lipogenesis 

gene expression. 

 

Effects of glucose on lipid accumulation in liver cells 

 

In our investigation focusing on liver cells, we delved 

into insulin signaling since glucose regulation primarily 

occurs through insulin in the liver. Supplementary 

Figure 2 illustrates our findings. We observed an 

upregulation in the Ser307 phosphorylation of IRS1, a 

crucial substrate protein marker associated with insulin 

resistance, within these liver cells. Conversely, the 

phosphorylation levels of Tyr632 in IRS1 and Ser473 in 

Akt were notably reduced under HG conditions. 

 

To explore the connection between hyperglycemia and 

lipid accumulation, we conducted experiments using 
serum-starved AC2F cells treated with high glucose 

concentrations (25 mM). Under these conditions, the 

treatment with HG notably increased the expression of 

FoxO6 and ApoC3 (Figure 3A). Additionally, an 

assessment via immunohistochemical staining revealed 

that FoxO6 transferred from the nucleus to the cytoplasm 

in response to HG conditions (Figure 3B). We further 

investigated the impact of glucose on lipid accumulation 

within AC2F cells. Notably, there was a significant 

glucose-dependent rise in cellular TG content (Figure 

3C). Moreover, through real-time PCR analysis of 

lipoprotein metabolism, we observed that MTP, ApoC3, 

and ApoB levels were elevated under HG conditions. 

Concurrently, genes associated with lipogenesis (PPARγ, 

ACC, and FAS) exhibited increased expression in HG-

treated cells (Figure 3D). Conversely, there was a notable 

decrease in the expression levels of genes involved in β-

oxidation (PPARα, CPT1α, and ACOX1) in HG-treated 

cells (Figure 3D). Furthermore, HG exposure correlated 

with upregulated expression of gluconeogenesis-

associated genes (PEPCK and G6Pase) (Figure 3D). 

Collectively, these findings suggest that high glucose 

levels promoted lipid accumulation by influencing the 

expression levels of genes related to gluconeogenesis. 

 

Increased lipid accumulation because of FoxO6 in 

AC2F cells 

 

The heightened activity of FoxO has been previously 

documented in situations where insulin levels decrease 

[6]. In our investigation, we explored the impact of 

FoxO6 overexpression on the expression of ApoC3 in 

AC2F cells. Specifically, cells were subjected to 

treatment with either a vehicle or the constitutively 

active form of FoxO6 (FoxO6-CA) at a concentration of 

100 MOI (multiplicity of infection). 

 

The outcomes indicated that treatment with FoxO6-CA 

led to a notable increase in the expression of ApoC3 

(Figure 4A). Additionally, cellular TG levels were 

elevated in cells treated with FoxO6-CA compared to 

those in normal cells (Figure 4B). Following a 24-hour 

treatment period, Chromatin Immunoprecipitation (ChIP) 

analysis was conducted using FoxO6 antibody or control 

IgG. The results revealed the presence of FoxO6 in the 

immunoprecipitated products obtained with the anti-

FoxO6 antibody, contrasting with the absence of FoxO6 

in products immunoprecipitated using control IgG or in 

mock-immunoprecipitated products (Figure 4C). 

Subsequent PCR analysis identified the amplification of a 

specific DNA fragment (614 bp) corresponding to the 

nucleotide region (−284/−897 nt) of the ApoC3 promoter 

within the DNA products co-immunoprecipitated with 

anti-FoxO6 (Figure 4C). Furthermore, an assessment of 

lipoprotein metabolism via real-time PCR unveiled 

increased levels of MTP, ApoC3, and ApoB in cells 
treated with FoxO6-CA. Similarly, the expression level 

of fat synthesis genes related to PPAR-γ was heightened 

in FoxO6-CA treated cells. Additionally, both PEPCK 
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and G6Pase showed increased expression in cells treated 

with FoxO6-CA (Figure 4D). These findings suggest that 

the activation of FoxO6 exerted a potent stimulatory 

effect on lipid accumulation within liver cells. 

 

Deletion of ApoC3 suppressed lipid accumulation 

in vitro 

 

In our investigation, we assessed ApoC3 expression 

levels in AC2F liver cells following transfection with 

ApoC3-siRNA. Successful knockdown of ApoC3 was 

achieved 24 hours after treatment with ApoC3-siRNA 

at a concentration of 20 nM. Additionally, to further 

delve into the pivotal role of FoxO6 in lipid 

accumulation, we employed a FoxO6 siRNA-mediated 

gene manipulation in AC2F cells. We observed a 

reduction in the elevated levels of FoxO6-mediated 

ApoC3 expression upon transfection with ApoC3-

siRNA (Figure 5A). Furthermore, a significant increase 

in ApoC3 levels was detected in the medium of cells 

 

 

 
Figure 3. High-glucose induced hyperlipidemia through FoxO6-mediated ApoC3 expression. (A) Western blot was used to 

detect p-FoxO6, FoxO6 in nuclear extracts, and ApoC3 in cytoplasmic extracts after treatment of AC2F cells with glucose (25 mM) for 6 h. 
TFIIB was the loading control of the nuclear fractions, whereas β-actin was the loading control of the cytosolic fractions. Results are 
representative of three independent experiments. Bars in the densitometry data represent the mean ± S.E., and significance was 
determined using one-factor ANOVA: **p < 0.01, ***p < 0.001 vs. Normal. (B) Immunohistochemical staining for FoxO6 in cells with high-
glucose treatment. Scale bar: 100 μm. (C) Cellular triglyceride contents after glucose treatment (25 mM) for 24 h was measured using a 
colorimetric assay. Results of one-factor ANOVA: ***p < 0.001 vs. non-treated cells. Three independent experiments were performed and 
similar results were obtained. (D) Real-time PCR analyses were conducted for measuring the mRNA levels of the lipoprotein metabolism-
related genes (MTP, ApoC3, ApoB, and ApoA1), lipogenesis genes (PPARγ, FAS, and ACC) and gluconeogenesis-related genes (PEPCK and 
G6Pase). Three independent experiments were performed and similar results were obtained. Results of one-factor ANOVA: *p < 0.05, **p < 
0.01, ***p < 0.001 vs. non-treated cells. 
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transfected with FoxO6-CA. Subsequently, we 

measured ApoC3 levels in the medium obtained from 

FoxO6-CA-treated cells following transfection with 

ApoC3-siRNA (Figure 5B). We then examined 

FoxO6’s capability to stimulate lipid accumulation in 

AC2F cells. FoxO6 demonstrated an increase in both 

 

 
 

Figure 4. FoxO6 regulates hyperlipidemia through ApoC3 expression in FoxO6 virus-treated cells. (A) Expression of FoxO6 and 
ApoC3 by FoxO6. AC2F cells were grown to 80% confluence in 100-mm dishes using DMEM and then stimulated with 100 MOI of FoxO6 for 
24 h and analyzed using western blotting using the appropriate antibody. Results are representative of three independent experiments. 
Bars in densitometry data represent the mean ± S.E., and significance was determined using one-factor ANOVA: *p < 0.05 vs. Normal. (B) 
Cellular TG contents were measured using a colorimetric assay. Results of one-factor ANOVA: ***p < 0.001 vs. untreated cells. (C) FoxO6 
binds to the ApoC3 promoter in liver cells. The cells were subjected to ChIP assay using rabbit pre-immune IgG and an anti-FoxO6 antibody. 
Immunoprecipitates were subjected to PCR using rat ApoC3 promoter-specific primers. (D) Cells incubated without or with FoxO6 (100 
MOI) for 24 h were subjected to real-time PCR analyses to determine the mRNA levels of TG synthesis genes (MTP, ApoC3, ApoB, and 
ApoA1), lipogenesis genes (PPARγ, ACC, and FAS), and gluconeogenesis-related genes (PEPCK and G6Pase), using the β-actin gene as a 
control. Results of one-factor ANOVA: *p < 0.05, **p < 0.01, ***p < 0.001 vs. untreated cells. (E) Predicted mechanism in aged liver tissues 
after HFD administration against lipid accumulation. 
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the TG level in the media and the cellular TG 

concentration. However, this FoxO6-induced elevation 

in TG was attenuated following ApoC3-siRNA 

treatment (Figure 5C, 5D). 

 

Regulation of the hepatic lipid accumulation in 

FoxO6-KO and FoxO6-Tg mice 

 

In a study by Calabuig-Navarro et al. [50], homozygous 

knockout mice lacking FoxO6 (FoxO6-KO) were 

generated to elucidate the role of FoxO6 in glucose 

metabolism. To ascertain the impact of lipid 

accumulation subsequent to FoxO6 knockout, levels of 

apolipoproteins and lipogenesis-related genes were 

evaluated. Our findings revealed a notable reduction in 

FoxO6 expression within the livers of FoxO6-KO mice 

(Figure 6A). Additionally, in assessing the effect of 

ApoC3 and ApoB on FoxO6-KO liver cells, we 

observed a significant decrease in the expression levels 

of ApoC3 and ApoB following FoxO6 depletion 

 

 
 

Figure 5. Deficiency of ApoC3 suppressed FoxO6-mediated lipid accumulation in AC2F liver cells. (A) AC2F cells were 
transiently transfected with ApoC3-siRNA (20 nM) for 24 h with or without FoxO6 (100 MOI). Cells were analyzed using western blotting 
using antibodies against FoxO6, ApoC3, and β-actin. Bars in the densitometry data represent the mean ± S.E., and significance was 
determined using one-factor ANOVA: #p < 0.05, ##p < 0.01, ###p < 0.001 vs. Normal; **p < 0.01 vs. FoxO6-CA. (B) Levels of ApoC3 were 
determined in the media of the cells. Three independent experiments were performed and similar results were obtained. Results of one-
factor ANOVA: **p < 0.01 vs. non-treated cells; ##p < 0.01 vs. FoxO6 virus-treated cells. (C) TG level of the media from FoxO6 with ApoC3-
siRNA-treated cells. (D) Cellular TG concentration, after transfected cells were pre-incubated with ApoC3-siRNA (20 nM) for 24 h with or 
without FoxO6 (100 MOI), was measured using a colorimetric assay. Results of one-factor ANOVA: #p < 0.05, ###p < 0.001 vs. non-treated 
cells; *p < 0.05, ***p < 0.001 vs. FoxO6 virus-treated cells. 
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(Figure 6A). Moreover, hepatic TG contents exhibited a 

decrease in FoxO6-KO livers when compared to their 

WT littermates (Figure 6B). 

Subsequently, we proceeded to investigate the impact 

on lipoprotein metabolism using real-time PCR 

analysis. In FoxO6-KO mice, as anticipated, levels of 

 

 
 

Figure 6. FoxO6 regulates hepatic lipid accumulation in FoxO6-KO mice. Mice were fed a high-fat diet at 4 weeks of age for 12 

weeks (n = 6). (A) Western blotting was performed to examine the protein levels of FoxO6, ApoC3, and ApoB in the liver of FoxO6-KO mice. 
TFIIB was the loading control of the nuclear fractions, whereas β-actin was the loading control of the cytosolic fractions. Results are 
representative of three independent experiments. Bars in densitometry data represent the mean ± S.E, and significance was determined 
using one-factor ANOVA: **p < 0.01 vs. NTg. (B) Hepatic TG levels in FoxO6-KO mice. One representative result of three experiments 
yielding similar outcomes for each protein is shown. Results of one-factor ANOVA: *p < 0.05 vs. WT littermates. (C) Real-time PCR analyses 
were performed to measure the mRNA levels of FoxO6, MTP, ApoC3, ApoB, and ApoA1. Three independent experiments were performed 
and similar results were obtained. Results of one-factor ANOVA: *p < 0.05, **p < 0.01, ***p < 0.001 vs. WT littermates. (D) Real-time PCR 
analyses were performed to measure the mRNA levels of PPARγ, ACC, and FAS. Results of one-factor ANOVA: *p < 0.05 vs. WT littermates. 
(E) Real-time PCR analyses were performed for measuring the mRNA levels of PEPCK, and G6Pase. Result of one-factor ANOVA: **p < 0.01 
vs. WT littermates. 
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MTP, ApoC3, and ApoB were notably suppressed 

(Figure 6C). Additionally, mRNA levels of genes 

associated with lipogenesis, namely PPARγ, ACC, and 

FAS, exhibited a decrease in the livers of FoxO6-KO 

mice (Figure 6D). Furthermore, genes involved in 

gluconeogenesis, specifically PEPCK and G6Pase, 

demonstrated reduced expression in the FoxO6-KO 

livers (Figure 6E). Conversely, in FoxO6-Tg mice, an 

intensified stimulatory effect on the expression of 

ApoC3 and ApoB was observed (Supplementary Figure 

3A). However, despite this effect, hepatic TG levels 

were increased in FoxO6-Tg livers compared to their 

WT littermates (Supplementary Figure 3B). 

 

Subsequent examination of the lipoprotein metabolism 

via real-time PCR in FoxO6-Tg mice revealed 

heightened levels of MTP, ApoC3, and ApoB 

(Supplementary Figure 3C). Additionally, expression 

levels of lipogenesis genes (PPARγ and ACC) were 

increased in FoxO6-Tg mice (Supplementary Figure 

3D). Notably, genes associated with gluconeogenesis, 

such as PEPCK and G6Pase, exhibited a significant 

increase in FoxO6-Tg mice (Supplementary Figure 3E). 

 

DISCUSSION 
 

Aging constitutes a multifaceted process associated with 

a spectrum of diseases and metabolic syndromes [51]. 

Presently, the prevalence of diabetes and obesity is on 

the rise due to the aging demographic [52]. The onset of 

NAFLD arises from the excessive accumulation of 

lipids in the liver, predominantly attributed to escalated 

caloric intake, particularly from an HFD [53]. 

Moreover, NAFLD is intricately linked to various age-

related metabolic disorders [54]. Previous research has 

illuminated that during the aging process, there is an 

upregulation in the expression of genes involved in 

lipogenesis, a phenomenon attributable to heightened 

expression levels of FoxO1 and PPARγ. Both FoxO1 

and PPARγ are recognized contributors to lipid 

accumulation [55]. In the current study, it was observed 

that serum TG and insulin levels exhibited significant 

elevation in aged rats compared to their younger 

counterparts, with a further marked increase observed in 

HFD-fed aged rats (Figure 1). Additionally, histological 

staining and hepatic triglyceride content were notably 

augmented in aged rats, further accentuated in HFD-fed 

aged rats (Figure 1). 

 

FoxO proteins are downstream effectors of the insulin 

signaling pathway and have been proposed to influence 

longevity by bolstering resistance against oxidative 

stress, potentially mitigating oxidative damage and 

contributing to decelerated aging [56, 57]. Moreover, 

FoxO proteins are known to mitigate toxicity arising 

from the aggregation of mutant proteins, and their role in 

maintaining homeostasis during aging holds direct 

implications for neurodegenerative diseases [58–60]. We 

have delineated the molecular mechanisms underlying 

HG impact on ApoC3 production. Both FoxO6 and 

ApoC3 protein expression were induced in response to an 

HFD feeding (Figure 2). However, it was observed that 

hyperglycemia induced lipid accumulation through the 

activation of FoxO6 (Figure 3). Our findings suggested 

that FoxO6 activation elevated the expression of ACC 

and FAS in liver cells (Figure 4D). Correspondingly, the 

accumulation of TG increased under these conditions, 

indicating a regulatory role for FoxO6 in enhancing liver 

lipid accumulation through the upregulation of 

lipogenesis gene expression (Figure 4B). PPARγ, known 

to promote hepatic lipid accumulation, plays a crucial 

role in hepatic steatosis by upregulating the expression of 

lipogenesis genes in diet-induced and genetically 

engineered obese mice [61–64]. Consistently, the 

knockout of PPARγ in db/db mice noticeably mitigated 

hepatic steatosis by downregulating the expression of 

genes such as FAS, SCD1, and ACC [63]. Previous 

studies have also linked PPARγ to fatty liver 

development in HFD-fed mice [62]. Our data indicated 

the binding of FoxO6 to a nucleotide sequence within the 

ApoC3 promoter (Figure 4C), encompassing insulin-

responsive elements (IREs) implicated in mediating the 

inhibitory effect of insulin on ApoC3 expression [65]. 

 

In obese mice, there was an observed increase in FoxO1 

expression along with its nuclear localization. This 

elevation in FoxO1 expression correlated with 

heightened ApoC3 expression in the liver, concurrent 

with elevated plasma TG levels and impaired glucose 

regulation in these mice [16]. Parallel to the effect of 

FoxO6 on ApoC3 expression in cellular models, 

activated FoxO6 was demonstrated to elevate hepatic 

ApoC3 expression, perturbing plasma TG metabolism 

in liver cells (Figure 4). Moreover, the introduction of a 

constitutively active form of FoxO6 via adenovirus was 

associated with augmented cellular ApoC3 production 

and disrupted TG metabolism in these cells (Figure 4). 

Additionally, while ApoC3 is primarily produced at low 

levels in the intestine [66], our study indicated that 

FoxO6 stimulated hepatic ApoC3 expression in cultured 

liver cells (Figure 4A). Notably, the capacity of FoxO6 

to bind to the ApoC3 promoter was hindered by insulin 

in liver cells (Figure 4C). Hence, the expression of 

ApoC3 in the liver is regulated by a mechanism 

involving HG-dependent FoxO6 action. 

 

ApoC3 functions as a lipid-binding protein primarily 

found in TG-rich lipoproteins, and its dysregulation has 

been closely associated with abnormal TG metabolism 
[16, 43, 67–71]. While ApoC3’s pivotal role in  

the pathogenesis of hypertriglyceridemia is well-

established, its precise biological function in NAFLD 
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remains elusive. Genetic mutations disrupting the 

carboxyl lipid-binding domain of ApoC3 lead to loss-

of-function mutations. These mutations hinder ApoC3’s 

ability to stimulate the formation of TG-enriched 

luminal lipid droplets (LLD) and the secretion of 

VLDL1 [25, 72, 73]. Additionally, a study by Ginsberg 

and Fisher [74] reported that in comparing ApoC3-Tg 

mice to WT mice, the levels of ApoB mRNA did not 

exhibit significant alterations. 

 

Insulin resistance has been implicated in the reduction 

of excessive TG production within the liver, attenuating 

steatosis. This attenuation coincides with the elevation 

of ApoC3 and ApoB expression observed in FoxO6-Tg 

mice (Supplementary Figure 3). Moreover, FoxO6  

has been associated with heightened lipogenesis, 

contributing to increased fat accumulation specifically 

within the liver of FoxO6-Tg mice (Supplementary 

Figure 3). Detailed investigations into the underlying 

molecular mechanisms revealed a significant increase in 

the expression of lipogenesis genes within the livers of 

FoxO6-Tg mice (Supplementary Figure 3). Depletion of 

FoxO6 significantly diminished the levels of ApoC3 

and ApoB (Figure 6A), and hepatic TG content was 

notably reduced in the livers of FoxO6-KO mice 

(Figure 6B). Fatty liver disease is closely associated 

with obesity [75] and insulin resistance. The link 

between hepatic steatosis and insulin resistance, 

observed both in humans [76] and animal models [77, 

78], suggests that insulin resistance might play a crucial 

role in the pathogenesis of obesity-induced fatty liver 

disease. Our current research further demonstrates that 

ApoC3 can modulate hepatic fat accumulation by 

regulating FoxO6 activity. 

 

Dysfunctional gluconeogenesis serves as a significant 

indicator of liver insulin resistance. Our investigation 

highlighted a substantial increase in the mRNA levels of 

key gluconeogenesis markers, PEPCK and G6Pase, 

within the liver of aged mice displaying liver insulin 

resistance (Figure 2 and Supplementary Figure 2). In our 

study, we uncovered the involvement of gluconeogenesis 

and FoxO6 in the context of insulin resistance. Moreover, 

treatment with HG notably elevated FoxO6 protein 

expression levels along with a significant increase in 

G6Pase and PEPCK mRNA levels. Intriguingly, the 

FoxO6-KO attenuated the upregulation of these genes 

associated with gluconeogenesis (Figure 6E). Based on 

these findings, we proposed the hypothesis that 

hyperglycemia-mediated FoxO6 plays a pivotal role in 

hindering insulin signaling, subsequently prompting the 

induction of gluconeogenesis-related genes in conditions 

marked by insulin resistance. 

 

We have identified the FoxO6 and ApoC3 signaling 

pathway as a key hepatic target involved in the 

modulation of glucose-induced enhancement of TG 

levels (Figure 3). The suppression of FoxO6 expression 

and its downstream target gene ApoC3 in the liver 

results in reduced ApoC3 concentrations in the plasma, 

underscoring the therapeutic potential of targeting 

FoxO6 in glucose-related effects (Figure 5). 

 

To summarize, the activation of FoxO6 via inhibition of 

the IRS/Akt pathway induces gluconeogenesis in aged 

rats fed an HFD, subsequently leading to upregulated 

hepatic ApoC3 expression. This elevation of ApoC3 

levels contributes to hyperlipidemia and hepatic 

steatosis, potentially exacerbating the aging process. 

Under hyperglycemic conditions, both in vivo and 

in vitro, FoxO6 demonstrates an increased capacity to 

augment ApoC3 expression (Figure 4E). 

 

Furthermore, in the context of hyperglycemia, hepatic 

expression and activation of FoxO6 significantly 

contribute to increased ApoC3 production, impairing 

plasma TG metabolism associated with aging in HFD-

fed conditions. Conversely, targeted inhibition of 

FoxO6 holds promise in ameliorating age-related 

dyslipidemia by restraining ApoC3 production in the 

liver, thereby suppressing its transcriptional activity. In 

conclusion, the upregulation of ApoC3 via FoxO6 

activation leads to the induction of hyperlipidemia and 

hepatic steatosis in aged rats subjected to an HFD. This 

discovery unveils a potential novel molecular target for 

therapeutic strategies against hepatic steatosis during 

the aging process, offering insights into its molecular 

and cellular underpinnings, particularly its association 

with FoxO6-mediated ApoC3 upregulation. 

 

MATERIALS AND METHODS 
 

Reagents 

 

Chemical reagents were obtained from Sigma-Aldrich 

(St. Louis, MO, USA). All primary (diluted to 1:1,000) 

and secondary (diluted to 1:10,000) antibodies were 

obtained from Santa Cruz Biotechnology (Santa Cruz, 

CA, USA). FoxO6 and phosphorylated (Ser184) of 

FoxO6 antibodies were obtained from Dr. Dong 

(University of Pittsburgh, Pittsburgh, PA, USA). 

 

Animal studies 

 

Sprague Dawley young male rats (6-month-old) and 

elderly rats (22-month-old) were purchased from 

Samtako (Gueonggi-do, Korea) and acclimated to the 

animal care facility for 7 days before the experiments. 

Animals were housed in an air-conditioned atmosphere 

under a 12-h light/dark cycle and were provided free 

access to standard rodent chow (Samtako) and water. 

To induce obesity, rats were fed a high-fat diet (60% 
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fat, Research Diets Inc.; D12492) for 14 days. All 

procedures were approved by Pusan National University 

and performed by animal committee (PNU-2017-1534). 

 

The livers from FoxO6-Knockout (KO) and FoxO6-

Transgenic (Tg) mice were obtained from Dr. H. Henry 

Dong (University of Pittsburgh Medical Center, 

Pittsburgh, PA, USA). 

 

Cell culture 

 

AC2F (rat hepatocellular carcinoma) cells were 

obtained from the American Type Culture Collection 

(Rockville, MD, USA), as described previously [55]. 

 

Serum biochemical analyses 

 

Serum samples were prepared by centrifugation (4°C, 

2000 × g for 15 min) after euthanasia. Glucose, free 

fatty acid (FFA), HDL, LDL, and TG level were 

measured using serum kits from Bioassay Systems 

(Hayward, CA, USA). The insulin levels used to rat 

ELISA kits (SHIBAYAGI, Shibukawa, Japan) and rat 

ApoC3 levels (Novus Biologicals, CO, USA). HOMA-

IR was calculated using the HOMA2 calculator [79]. 

 

Measurement of liver TG 

 

Liver tissues and cells were homogenized in phosphate-

buffered saline (PBS), as described previously [55]. 

 

Histological analysis  

 

Liver tissue was fixed in paraffin-embedded sections were 

stained with hematoxylin and eosin (H&E), following the 

method outlined in an earlier reference [55]. 

 

Immunohistochemistry analysis 

 

For immunostaining, liver sections were treated with 

0.6% H2O2 in Tris-buffered saline (TBS; pH 7.5) to 

block endogenous peroxidase for 15 min at room 

temperature, as described previously [55]. 

 

Immunofluorescence analysis 

 

AC2F cells were seeded at a density of 1 × 104 cells per 

well in a 12-well plate, following the method outlined in 

an earlier reference [80]. 

 

Protein extraction 

 

All solutions, tubes, and centrifuges were maintained at 
0–4°C. A total of 1 g of liver was homogenized with 

hypotonic lysis buffer, as described previously [81]. 

Western blot analysis 

 

Western blotting was performed in cytosolic and 

nuclear fraction, as described previously [55]. 

 

Isolation and quantitative real-time PCR 

 

Tissue RNA was purified using RiboEx Total RNA 

(GeneAll, Republic of Korea), following the method 

outlined in an earlier reference [55]. 

 

Chromatin immunoprecipitation (ChIP) assay 

 

ChIP was used to study the interaction between FoxO6 

and ApoC3 promoter DNA in the cells, as described 

previously [81]. ApoC3 promoter-specific primers 

(forward: 5′-ctctcacagccaggacagtt-3′ and reverse: 

5′-agctgccagaagagttgaga-3′), which flank the 

consensus FoxO6-binding sites in rat ApoC3 

promoters. 

 

Transfection of small interfering RNA (siRNA) 

 

Transfection was performed using Lipofectamine 2000 

reagent (Invitrogen). The liver cells were treated with 

scrambled-siRNA or ApoC3-siRNA-Lipofectamine 

complexes (20 nM) obtained from a commercial source 

(IDT), following the method outlined in an earlier 

reference [81]. 

 

Statistical analysis 

 

Analysis of variance (ANOVA) was used to analyze 

differences among the three or more groups, as 

described previously [81]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. HFD feeding induced liver damage in aged rats. Representative H&E staining shows increased vacuoles in 

liver tubules during aging. Scale bar: 100 μm. 
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Supplementary Figure 2. High-glucose suppressed the insulin signaling. Western blotting was used to detect p-IRS1 (Ser307), p-

IRS1 (Tyr632), IRS1, p-Akt (Ser473), and Akt in the cytosolic fraction (20 µg protein) after treatment of AC2F cells with glucose (25 mM) for 
1 h. β-actin was the loading control of the cytosolic fractions. Results are representative of three independent experiments. Bars in 
densitometry data represent means ± S.E., and significance was determined using one-factor ANOVA: **p < 0.01 vs. Normal. 
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Supplementary Figure 3. Regulation of the hepatic lipid accumulation in FoxO6-Tg mice. (A) Western blotting was 
performed to examine the protein levels of FoxO6, ApoC3, and ApoB in the livers of FoxO6-Tg mice. TFIIB was the loading 
control of the nuclear fractions, whereas β-actin was the loading control of the cytosolic fractions. Bars in the densitometry 
data represent the mean ± S.E., and significance was determined using one-factor ANOVA: #p < 0.05, ##p < 0.01, ###p < 0.001 
vs. Ntg. (B) Hepatic TG in FoxO6-Tg mice. Results of one-factor ANOVA ***p < 0.001 vs. WT littermates. (C) Real-time PCR 
analyses were performed for measuring the mRNA levels of FoxO6, MTP, ApoC3, ApoB, and ApoA1. Results of one-factor 
ANOVA: **p < 0.01, ***p < 0.001 vs. WT littermates. (D) Real-time PCR analyses were performed for measuring the mRNA 
levels of PPARγ, ACC, and FAS. Results of one-factor ANOVA: *p < 0.05 vs. WT littermates. (E) Real-time PCR analyses were 
performed for measuring the mRNA levels of PEPCK and G6Pase. Results of one-factor ANOVA: *p < 0.05, **p < 0.01 vs. WT 
littermates. 
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