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INTRODUCTION 
 
Osteoarthritis (OA) is the most common degenerative 
joint disease worldwide, characterized by symptoms 
such as cartilage degradation, pain and limited 
movement, accompanied by a significant decline in the 
patient’s quality of life [1]. There are currently no 
pharmacological methods to inhibit disease progression 
or reduce cartilage damage. OA treatment strategies are 
limited to adjunctive therapy such as joint replacement 
surgery and physical therapy to improve function [2]. 

Further improving the current limited understanding of 
OA has positive clinical value. 
 
Due to the heterogeneity of OA, individual etiology, 
clinical manifestations and response to treatment were 
inconsistent [3, 4]. These present great challenges for 
the prevention, diagnosis and prognosis prediction of 
OA. As objective, quantifiable features, biomarkers 
contribute to disease risk assessment by analyzing 
measurement reliability and summarizing biological, 
physiological or pathological pathways [5]. Currently, 
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ABSTRACT 
 
Background: Osteoarthritis (OA) is the most common degenerative joint disease worldwide. Further improving 
the current limited understanding of osteoarthritis has positive clinical value. 
Methods: OA samples were collected from GEO database and endoplasmic reticulum related genes (ERRGs) 
were identified. The WGCNA network was further built to identify the crucial gene module. Based on the 
expression profiles of characteristic ERRGs, LASSO algorithm was used to select key factors according to the 
minimum λ value. Random forest (RF) algorithm was used to calculate the importance of ERRGs. 
Subsequently, overlapping genes based on LASSO and RF algorithms were identified as ERRGs-related 
diagnostic biomarkers. In addition, OA specimens were also collected and performed qRT-PCR quantitative 
analysis of selected ERRGs. 
Results: We identified four ERRGs associated with OA risk assessment through machine learning methods, and 
verified the abnormal expressions of these screened markers in OA patients through in vitro experiments. The 
influence of selected markers on OA immune infiltration was also evaluated. 
Conclusions: Our results provide new evidence for the role of ER stress in the OA progression, as well as new 
markers and potential intervention targets for OA. 
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the only clinically used OA biomarkers are imaging 
markers. However, imaging markers cannot detect 
molecular alterations prior to the appearance of 
structural changes or provide potential therapeutic targets 
[6]. The predictive reliability of currently discovered 
OA biomarkers related to cartilage/bone structure, 
inflammation, and metabolism also requires further 
careful consideration [7–9]. At the same time, the 
reliability of multiple marker combinations in predicting 
OA severity and progression was significantly higher 
than that of a single marker [10, 11]. Therefore, there is 
an urgent need to screen for new meaningful diagnostic 
and prognostic markers. 
 
Endoplasmic reticulum (ER) stress is caused by 
impaired protein folding capacity in ER, leading to 
accumulation of incorrectly folded proteins in ER, 
which adversely affects cell physiological function 
[12]. There is a lot of evidence showing the role of  
ER stress in the development of OA. Chondrodysplasia 
is usually caused by mutations in genes that code  
for cartilage components. This genetic mutation causes 
impaired synthesis or secretion of extracellular matrix 
(ECM) components that make up the main part of 
cartilage and aggregate in ER, ultimately leading to loss 
of ECM and disruption of chondrocyte homeostasis 
[13–15]. As two major risk factors for OA, aging and 
obesity both impair the function of key ER molecular 
chaperones, leading to improper protein folding and  
ER stress [16]. Thus, ER stress-induced chondrocyte 
death has been identified as a contributing factor to OA 
and a potentially reliable treatment strategy [17]. It is 
necessary to further explore the mechanism and clinical 
value of ER stress in OA. 
 
The correlation between endoplasmic reticulum stress 
and immune infiltration has also been gradually 
clarified. Further activation of the unfolded protein 
response (UPR) during endoplasmic reticulum stress is 
characteristic of many autoimmune diseases [18]. 
Microenvironmental stress in the immune-infiltrating 
microenvironment, including hypoxia, reactive oxygen 
species, and pro-inflammatory cytokines, may increase 
the level of endoplasmic reticulum stress in dendritic 
cells (DC) and fibroblast-like synovial cells (FLS)  
in joints [19]. There is evidence that endoplasmic 
reticulum stress plays a role in the development 
process from B cells to plasma cells and the secretion 
of immunoglobulin [20, 21]. In addition, accumulation 
of misfolded proteins during ER stress can lead to 
increased MHC presentation on the cell surface, 
thereby increasing the chance of auto-reactive T cell 
activation [18]. Several pro-inflammatory cytokines 
have also been reported to act through endoplasmic 
reticulum stress processes [22, 23]. Therefore, the 
influence of endoplasmic reticulum stress on the 

immune infiltration of adaptive immune cells and 
related genes are worthy of further exploration. 
 
In this study, we identified four endoplasmic reticulum 
related genes (ERRGs) associated with OA risk 
assessment through machine learning methods, and 
verified the abnormal expression of these screened 
markers in OA patients through in vitro experiments. 
At the same time, we evaluated the effect of markers 
on OA immune infiltration. Our results provide new 
evidence for the role of ER stress in the progression of 
OA, as well as new markers and potential intervention 
targets for OA. 
 
MATERIALS AND METHODS 
 
Data collection and pre-processing 
 
Three open access datasets of OA and HC samples 
were collected from the GEO database, including 
GSE51588, GSE98918 and GSE117999. The “limma” 
script was used to preprocess the raw data of each GEO 
dataset and “SVA” script was utilized to normalize the 
raw data and eliminate the batch effect of the three 
GEO datasets in the R language environment [24]. In 
this study, the endoplasmic reticulum related genes 
(ERRGs) were identified based on the GeneCards 
database [25] (Supplementary Table 1). 
 
Differential expression analysis of transcriptome 
data and molecular pathways enrichment prediction 
 
After the normalization of the transcriptome data of HC 
and OA samples, we conducted a differential expression 
analysis via “limma” script in the R environment. 
Under the selection criteria of p.adjust < 0.05, the 
DEGs between the OA and HC groups was identified. 
Based on the SRTING database, the potential inter-
action of ERRGs was revealed using the “string” 
script. Moreover, we used the “clusterProfiler” package 
to predict the potential molecular function and KEGG 
pathways of the ERRGs. 
 
Construction of WGCNA network to identify the 
crucial gene module for OA 
 
A WGCNA network model was established to identify 
the crucial gene module for OA. In first, according  
to the transcriptome data of all samples (HC samples 
and OA samples), we developed a clustering tree to 
exclude the abnormal samples. Next, based on the 
optimal soft threshold (β), we established a WGCNA 
network. After the exclusion filter of expression level 
was set at 0.5, the genes were divided into the different 
gene modules and the dynamic tree cut method to 
merge the similar gene modules. Pearson correlation 
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was used to evaluate the relationship between each 
gene module and estimate the potential correlation 
between clinical trait and each gene module. Finally, 
the most relevant gene module was chosen for the 
subsequent analysis. 
 
Generation of ERRG related diagnostic biomarker 
based on the machine learning algorithm 
 
Two unique machine learning algorithms were utilized 
to identify the ERRGs related diagnostic biomarkers. 
Based on the expression profiler of the feature ERRGs 
related genes, a LASSO algorithm was performed to 
select the pivotal ERRG related genes according to the 
minimum λ value. Random forest (RF) algorithm was 
conducted to calculate the importance of each feature 
ERRGs related genes. Subsequently, the overlapping 
genes based on LASSO and RF algorithms were 
identified as the ERRGs related diagnostic biomarker. 
 
Model diagnostic effectiveness evaluation of ERRGs 
related biomarker and nomogram 
 
R package “rms” was used to establish the nomogram 
model based on the expression profiler of ERRGs 
related biomarkers. The formula for nomogram was: 
nomogram score = HSPA5 × −5.4 + UBL4A × 5.2 + 
ATF4 × −4.9 + PPP1R15A × −4.4. Utilizing the 
“pROC” script, the ROC curve was carried out to 
evaluate the model diagnostic effectiveness of the 
ERRGs related biomarkers for OA. 
 
Characterization of immune microenvironment 
landscape 
 
According to the 22 immune cell gene markers 
signature, we used the CIBERSORT estimation 
algorithm to evaluate the immune cell relative  
percent of OA and HC samples. In addition, Pearson 
correlation method was performed to estimate the 
potential correlation of ERRGs related biomarkers and 
22 immune cells. 
 
qRT-PCR quantitative analysis of ERRGs related 
biomarkers 
 
Real-time fluorescence quantitative qPCR was 
performed to detect the expression levels of HSPA5, 
UBL4A, ATF4, and PPP1R15A. Frozen OA tissues 
were taken out at −80°C, and total RNA was extracted, 
and all the steps were strictly in accordance with  
the instructions of the RNA Extraction Kit (Qiagen, 
Germany). The RNA concentration of each sample 
was determined by Nanodrop 2000, and RNA was 
reverse transcribed into cDNA according to the 
Reverse Transcription Kit (TaKaRa, Japan). cDNA 

was then used as a template for amplification of 
HSPA5, UBL4A, ATF4 and PPP1R15A on a Bio-Rad 
CFX90 Real-time PCR instrument. qRT-PCR reaction 
conditions were as follows: 95°C pre-denaturation for 
30 s; 95°C denaturation for 5 s, RT-PCR reaction 
conditions were as follows: 95°C pre-denaturation for 
30 s; 95°C denaturation for 5 s, and 95°C denaturation 
for 5 s. The reaction was performed at the same time 
as the reaction. The reaction conditions were: pre-
denaturation at 95°C for 30 s; denaturation at 95°C for 
5 s; annealing at 56°C for 5 s; and extension at 65°C 
for 5 s. A total of 39 cycles were performed. The 
relative expression of target genes was analyzed by 
using 2−ΔΔCt (ΔCt = Ct value of target gene - Ct value 
of internal reference), and GAPDH was used as 
internal reference (Supplementary Table 2). 
 
Statistical analysis 
 
All statistical analysis were performed under the  
R software 4.1.0 (https://cran.r-project.org/) and Perl 
language environment. Statistical comparison of data 
between the two groups was calculated using “limma” 
R package (Wilcox rank-sum test). p < 0.05 was 
considered to be statistically significant. 
 
Data availability statement 
 
The bioinformatic datasets presented in this study can 
be found in online repositories. The names of the online 
repositories and accession numbers can be found in the 
article. 
 
RESULTS 
 
Data processing and differential expression analysis 
of OA and HC groups 
 
We extracted a total of 25 HC samples and 25 OA 
samples from the GEO database to investigate the 
potential function of ERAGs in OA. Utilizing the “sva” 
software, the batch effect of each sample was removed 
and normalized (Figure 1A, 1B). According to the 
“limma” package, the differential expression analysis 
was performed with the analysis standards set at 
p.adjust < 0.05 and |FC|>1 (Figure 1C). The heatmap 
reveals the most significantly DEGs between the OA 
and HC groups (Figure 1D). 
 
Identification of the pivotal gene module associated 
with OA via WGCNA 
 
A total of 25 HC and 25 OA samples were enrolled  
to identify the pivotal gene module for OA based on 
the WGCNA. Firstly, the samples were clustered to 
exclude the abnormal samples. Based on the filter 
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condition of scale-free topology (R2) set at >0.85,  
we constructed a WGCNA network with the soft  
threshold (power) selected as β = 6 (Figure 2A). With 
the height of gene modules set at 0.25, the feature 
genes were divided into the 25 inimitable gene 
modules (Figure 2B). Correlation analysis suggested 
the stable independence between the 25 inimitable 
gene modules (Figure 2C). Thereafter, we further 
evaluated the association between the clinical trait  
and gene modules and the result of module-trait 
relationships illustrated that the brown gene module 
was positively associated with HC but negatively 
associated with OA (Figure 2D). The scatter plot of 
brown gene module illustrated a strong correlation 
between the module membership and gene significance 
(r = 0.92, p < 1e-200), and was selected for the 
subsequent analysis (Figure 2E). 

Analysis of the pivotal DE-ERRGs and key 
molecular pathways 
 
Utilizing the differential expression analysis and 
WGCNA network (brown module), we observed the  
10 overlapping DE-ERRGs were considered as the 
pivotal DE-ERRGs for OA (Figure 3A). The PPI 
network revealed a strong relationship of 10 pivotal  
DE-ERRGs (Figure 3B). To further investigate the 
potential molecular function of pivotal DE-ERRGs, we 
performed the GO ang KEGG enrichment analysis. GO 
enrichment results suggested that the 10 pivotal DE-
ERRGs was enriched in response to unfolded protein, 
response to topologically incorrect protein, smooth 
endoplasmic reticulum, mitochondrial outer membrane 
and chaperone binding, while the KEGG enrichment 
analysis revealed that protein processing in endoplasmic 

 

 
 
Figure 1. The workflows of data processing and differential expression analysis between HC and OA groups. (A, B) Data pre-
processing of HC and OA samples in GEO database. (C) Identification of the DEGs between the HC and OA samples, the red dot indicates the 
up-DEGs and the blue dots indicate the down-DEGs in OA. The standard for selecting DEGs is set at p.adjust < 0.05. (D) The expression 
analysis of DEGs between HC and OA groups. 
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Figure 2. Establishment of WGCNA model for selecting the pivotal gene module in OA. (A) Scale independence and mean 
connectivity. (B) The height of different gene modules and dynamic tree cut. (C) Potential association of 25 unique gene modules. (D) Correlation 
analysis of 25 unique gene modules and clinical features. (E) The relationship of module membership and gene significance in brown module. 
 

 
 
Figure 3. Identification of pivotal DE-ERRGs and molecular pathway enrichment analysis. (A) Selection of pivotal DE-ERRGs via 
differential expression analysis and WGCNA. (B) PPI network analysis of 10 pivotal DE-ERRGs. (C, D) Molecular function analysis of 10 
pivotal DE-ERRGs. 
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reticulum, amyotrophic lateral sclerosis and pathways 
of neurodegeneration- multiple diseases may medicated 
the role of DE-ERRGs in OA (Figure 3C, 3D). 
 
Characteristic DE-ERRGs biomarker identification 
for OA 
 
LASSO and RF machine learning algorithms were 
performed to identify the characteristic ERRGs-related 
biomarkers for OA. Based on the expression of 10 
pivotal DE-ERRGs, the LASSO algorithm revealed the 
coefficients of each variable and 8 feature variables was 
selected with the minimum log lambda (λ = 8) (Figure 
4A). According to the RF algorithm, the 10 pivotal DE-
ERRGs were ranked according the variable importance 
and 5 important variables were identified (Figure 4B). 
By Venn diagram, 4 overlapping DE-ERRGs were 
considered as the feature biomarkers for OA, involving 
HSPA5, UBL4A, ATF4 and PPP1R15A (Figure 4C). 
The Pearson correlation analysis of 4 ERGGs feature 
biomarkers illustrated that HSPA5 was negatively 

associated with UBL4A, while was positively associated 
with ATF4 and PPP1R15A; UBL4A was negatively 
correlated with ATF4 and PPP1R15A; while ATF4 was 
positively linked with PPP1R15A (Figure 4D). 
 
Model effectiveness assessment and nomogram 
construction of feature ERRGs biomarkers 
 
We further evaluated the diagnostic effectiveness of 
the ERRGs related biomarkers in OA and the 
expression profile results suggested that the expression 
of HSPA5, ATF4 and PPP1R15A in HC group was 
greatly overexpressed, while the expression of UBL4A 
was significantly overexpressed in OA group (Figure 
5A–5D). According to the expression profile of the 
four ERRGs related biomarkers, we established a 
newly nomogram model to evaluate the diagnostic 
effectiveness for OA (Figure 5E). The ROC analysis 
result indicated that the AUC of HSPA5, UBL4A, 
ATF4 and PPP1R15A was 0.805, 0.776, 0.882 and 
0.955, respectively. Notably, the AUC of nomogram 

 

 
 
Figure 4. Feature ERRGs biomarkers identification using LASSO and RF machine learning algorithm. (A) LASSO algorithm for 
selecting feature ERRGs related biomarkers. (B) The importance ranking of 10 pivotal DE-ERRGs via RF algorithm. (C) Identification of feature 
ERRGs biomarkers via RF and LASSO machine learning algorithms. (D) Pearson correlation analysis of HSPA5, UBL4A, ATF4 and PPP1R15A. 
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model was 0.987, which was higher than  
HSPA5, UBL4A, ATF4 and PPP1R15A, illustrating  
a satisfactory diagnostic ability of nomogram model  
for OA (Figure 5F). 
 
Immune microenvironment characteristic and GSEA 
analysis 
 
Utilizing the signature of 22 immune cell subtypes,  
we evaluated the proportion of 22 immune cell of  
each HC and OA sample by CIBERSORT algorithm 
(Figure 6A, 6B). The quantitative results of 22 immune 
cells indicated that the relative percent of plasma cells, 
NK cells activated, macrophages M1 and mast cells 
resting in OA group was significantly higher, whereas 
the relative percent of T cells CD4 memory resting, 
Dendritic cells activated and mast cells activated in 
HC group was remarkable up-regulated than the OA 
group. In HC group, the GSEA result suggested that 
adipocytokine signaling pathway, MAPK signaling 
pathway and NOD like receptor signaling pathway was 
up-regulated; however, the lysosome, allograft rejection 

and cell adhesion molecules cams was up-regulated in 
OA group (Figure 6C, 6D). 
 
We further predicted the potential association of ERRGs 
related biomarkers and immune microenvironment 
characteristic using the Pearson correlation algorithm. 
As illustrated in Figure 7A–7D, we observed that 
ATF4 was positively associated with mast cells 
activated and negatively associated with mast cells 
resting, NK cells activated, plasma cells and B  
cells naïve; HSPA5 was positively correlated with 
dendritic cells activated and mast cells activated but 
negatively correlated with mast cells resting, plasma 
cells, NK cells activated and dendritic cells resting; 
PPP1R15A was positively correlated with T cells 
CD4 memory resting, dendritic cells activated and 
mast cells activated, while was negatively associated 
with mast cells resting, plasma cells and NK cells 
activated; UBL4A was positively correlated with 
dendritic cells resting and mast cells resting but 
negatively correlated with mast cells activated and 
dendritic cells activated. 

 

 
 
Figure 5. Diagnostic effectiveness evaluation and nomogram construction based on the ERRGs related biomarkers. (A–D) 
The expression profile analysis of HSPA5, UBL4A, ATF4 and PPP1R15A in HC and OA groups. (E) Nomogram construction based on the four 
ERRGs related biomarkers. (F) Diagnostic effectiveness evaluation of HSPA5, UBL4A, ATF4, PPP1R15A and nomogram score. 
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Figure 6. Estimation of immune microenvironment characteristic and KEGG related GSEA analysis. (A) The evaluation of 22 
immune cell subtypes of HC and OA groups based on the CIBERSORT estimation algorithm. (B) The quantitative analysis of relative percent 
of 22 immune cell subtypes in HC and OA groups. (C, D) KEGG related pathway analysis in HC and OA groups based on the GSEA analysis. 
 

 
 
Figure 7. Potential association analysis of ERRGs related biomarkers and immune microenvironment characteristic. The 
lollipop plot shows the association of immune microenvironment and (A) ATF4, (B) HSPA5, (C) PPP1R15A and (D) UBL4A. 
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In vitro validation of ERRGs related biomarkers 
 
We further validated the expression profiler of the  
four ERRGs related biomarkers in the HC and OA 
samples. The expression results revealed that the HC 
group had higher expression of ATF4, HSPA5 and 
PPP1R15A, whereas the expression of UBL4A in OA 
group was significantly higher than HC group (Figure 
8A–8D). 
 
DISCUSSION 
 
In this study, we screened four ERRGs with OA severity 
and progression, evaluated their effects on immune 
infiltration, and verified their abnormal expressions in 
OA patients through in vitro experiments. 
 
Among the four ERRGs we screened, PPP1R15A  
had the most significant effect on OA. PPP1R15A  
is a key factor in the integrative stress response of 

mammals [26]. PPP1R15A mediates dephosphorylation 
of eIF2α [27, 28]. When eIF2α is phosphorylated, 
global protein synthesis is reduced, which is beneficial 
for cell survival and recovery [29]. In contrast, 
dephosphorylation of eIF2α allowed the cells to resume 
normal protein synthesis processes [30, 31]. Our results 
showed reduced PPP1R15A levels in patients with  
OA. PPP1R15A can direct the breakdown of the 
unfolded protein response (UPR) and lead to the 
restoration of normal ribosome activity. UPR is a  
direct result of endoplasmic reticulum (ER) stress [32]. 
Mice lacking PPP1R15A activity were healthier than 
wild-type controls, had improved insulin sensitivity and 
were more resistant to ER stress [33] and inhibited 
PPP1R15A to protect cells from ER stress-induced 
apoptosis [34]. At the same time, PPP1R15A’s 
promoting effect on Cd8+ T cells has also been reported 
[35], which is consistent with our observed immune 
infiltration results. Our data demonstrate the role of 
PPP1R15A in OA development from a new perspective. 

 

 
 
Figure 8. qRT-PCR analysis of the four ERRGs related biomarkers in OA and HC groups. The expression profiler of (A) ATF4, (B) 
HSPA5, (C) PPP1R15A and (D) UBL4A in HC and OA groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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UBL4A is essential for the mitochondrial fusion process 
under nutrient deprivation stress [36]. Meanwhile,  
as a ubiquitin ligase-associated protein, UBL4A is 
involved in proteasome degradation and mediates 
DNA damage signaling and cell death [37, 38]. 
UBL4A plays an important role in the development of 
immune dysfunction and subsequent abnormal bone 
metabolism. UBL4A contributes to the development  
of inflammatory diseases by regulating NF-CUMB 
signaling in macrophages and dendritic cells [39]. 
UBL4A knockout mice showed mild kyphosis and 
scoliosis with dysregulation of osteoblastogenesis and 
chondrogenesis [40]. UBL4A knockout mice resist 
collagen-induced arthritis by regulating the balance  
of Th1, Th17, and regulatory T cells in the T cell 
subpopulation [41]. We observed that the higher 
expression of UBL4A in OA patients may be related to 
the role of UBL4A in promoting inflammation and 
abnormal bone metabolism reported in the literature. 
 
ATF4 is a member of the activating transcription 
factor (ATF)/cyclic adenosine phosphate Responsive 
element binding (CREB) family and plays a key role 
in the regulation of osteoblast function [42]. ATF4 
accumulates in osteoblasts and is a specific activator 
of osteocalcin specific element 1 (OSE1), which is 
particularly active in osteoblasts [43, 44]. In addition 
to participating in amino acid metabolism, ATF4 plays 
an important role in type I collagen synthesis and 
transcriptional control of several major osteoblast 
genes [45, 46]. ATF4 is involved in various diseases 
related to bone metabolism, including Coffin-Lowry 
Syndrome [44]. In OA, AFT4 is associated with 
RUNt-associated transcription factor 2 (Runx2), which 
is essential for chondrocyte hypertrophy, and regulates 
osteoblast differentiation and chondro-development 
[47–49]. 
 
HSPA5, member A of the heat shock protein family 
(HSPA5), is a chaperone member mainly expressed in 
ER [50]. HSPA5 is involved in UPR process and 
promotes cell survival under ER stress [51]. Recently, 
HSPA5 was found to be a suppressor of the ferroptosis 
process [52, 53]. In OA, inhibition of HSPA5 expression 
can degrade GPX4, thus promoting ferroptosis in 
chondrocytes. However, upregulated HSPA5 expression 
could inhibit inflammatory damage and ferroptosis, thus 
alleviating OA progression [54]. Similarly, we observed 
that compared with the control group, the expression 
level of HSPA5 in OA patients was significantly reduced, 
which also suggested the role of HSPA5 and the 
ferroptosis involved in OA disease progression. 
 
In the process of OA development, low-grade 
inflammatory processes formed by immune infiltration 
are involved. Our immunoinfiltration results showed 

that OA patients had significantly increased M1 
macrophage infiltration levels compared with healthy 
controls. The number of macrophages in the synovial 
membrane of OA increased and was associated with OA 
disease progression and pain [55]. In addition, the 
disturbance of macrophage polarization in synovial 
tissue may contribute to the occurrence and progression 
of OA [56]. The degree of imbalance of the M1/M2 
type of macrophage polarization is helpful in evaluating 
the severity of knee OA [57]. Further studies showed 
that the activated synovial macrophages in OA patients 
were mainly M1 macrophages, and the polarization of 
macrophages to M2 would weaken the development of 
OA, suggesting that the increase of M1 synovial macro-
phages may be the key reason for the deterioration of 
OA, which is consistent with the phenomenon we 
observed [58]. M1 macrophages can be induced by IFN-γ 
and TNF-α in vitro [59]. Because of its ability to produce 
pro-inflammatory cytokines including TNF-α and IL-1, 
M1 macrophages are known as pro-inflammatory 
macrophages [60]. The possible mechanism by which 
M1 macrophages affect OA is that M1 macrophages 
with increased content in OA synovium can secrete 
more cytokines. Subsequent chronic inflammation leads 
to cartilage degradation and osteophyte formation [61]. 
 
The results of DE-ERRGs pathway enrichment analysis 
showed that UPR was the most relevant pathway in 
biological process, suggesting the possible role of  
UPR in OA. UPR is induced by loading of unfolded or 
misfolded proteins that accumulate in ER and is intended 
to restore ER homeostasis by initiating apoptosis when 
ER stress persists [51]. UPR plays a crucial role in 
cartilage formation [62]. In chondrocytes and osteoblasts, 
bone morphogenetic protein 2 (BMP2) is an activator  
of UPR signaling [63]. Severe chondrodysplasia was 
observed in BMP2-knockout mice, accompanied by 
disturbances of growth plate chondrocytes [64]. In 
addition, the aforementioned ATF4 is also regulated  
by BMP2 and is involved in the expression of UPR 
transcription factors [63]. Targeting UPR has potential 
value in improving symptoms in cartilage-related 
diseases [65]. 
 
From targeted therapy to molecular classification and 
patient stratification to prognostic prediction, microarray 
has been shown to have important clinical applications 
in a variety of diseases including OA [66, 67]. In this 
study, we screened four ERRGs associated with OA 
progression through microarray analysis of a public 
database and verified their abnormal expression in OA 
patients. By analyzing the differentially expressed genes 
from different sources and involved pathways of OA, 
we can not only clarify the potential genetic mechanism 
of OA pathogenesis, but also explore potential OA 
targeted drug therapeutic targets [66, 68, 69]. Limited to 
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the condition of public database, the selection bias of 
race and region existed in this study. In the future, 
further large-scale, multi-center analyses will better 
analyze the reliability and potential clinical application 
value of the selected targets. In addition, this study did 
not involve mechanism studies, and further molecular 
mechanism studies in the future can better elucidate the 
influence of different expressed genes on OA. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Table 1. 
 
Supplementary Table 1. The gene list of ERRGs related genes signature. 

 
Supplementary Table 2. The primer sequences of four ERRGs related biomarkers. 

UBL4A 
Forward Primer AGATGGGAAACGACTCTCGGA 
Reverse Primer CGCCTTCTTCTAGTAGCACCTT  

PPP1R15A 
Forward Primer ATGATGGCATGTATGGTGAGC 
Reverse Primer AACCTTGCAGTGTCCTTATCAG 

HSPA5 
Forward Primer CATCACGCCGTCCTATGTCG 
Reverse Primer CGTCAAAGACCGTGTTCTCG 

ATF4 
Forward Primer ATGACCGAAATGAGCTTCCTG 
Reverse Primer GCTGGAGAACCCATGAGGT 

GAPDH 
Forward Primer TGTGGGCATCAATGGATTTGG  
Reverse Primer ACACCATGTATTCCGGGTCAAT 
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