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INTRODUCTION 
 
Crohn’s disease (CD) is an immune-mediated, 
chronic inflammatory disease of the gastrointestinal 
tract that may lead to progressive gut dysfunction and 
long-term disability [1, 2]. Although the etiology of 
CD remains unclear, recent therapeutic approaches 
have shifted from mere symptom management to 
prioritizing the attainment of clinical and deep 
remission [3]. Indeed, the exploration of complex 
molecular mechanisms associated with CD and the 
identification of reliable biomarkers for diagnosis and 

treatment are crucial endeavors in the field of clinical 
management. 
 
Rheumatoid arthritis (RA) is an immune-mediated 
inflammatory disease often treated with medications 
frequently used for CD, such as infliximab and 
adalimumab [4]. CD and RA appear to be 
interconnected, as patients with these conditions often 
exhibit similar pathological alterations mediated by 
shared molecular mechanisms [5]. Hence, we contend 
that investigating the genes common to both diseases 
can potentially yield valuable insights for enhancing 
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ABSTRACT 
 
Background: Crohn’s disease (CD) and rheumatoid arthritis (RA) are immune-mediated inflammatory diseases. 
However, the molecular mechanisms linking these two diseases remain unclear. 
Methods: To identify shared core genes between CD and RA, we employed differential gene analysis and the 
least absolute shrinkage and selection operator (LASSO) algorithm. Functional annotation of these core 
biomarkers was performed using consensus clustering and gene set enrichment analysis. We also constructed a 
protein-protein network and a miRNA-mRNA network using multiple databases, and potential therapeutic 
agents targeting the core biomarkers were predicted. Finally, we confirmed the expression of the genes in the 
biomarker panel in both CD and RA using quantitative PCR. 
Results: A total of five shared core genes, namely C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif 
chemokine ligand 9 (CXCL9), aquaporin 9 (AQP9), secreted phosphoprotein 1 (SPP1), and metallothionein 1M 
(MT1M), were identified as core biomarkers. These biomarkers activate classical pro-inflammatory and immune 
signaling pathways, influencing immune cell aggregation. Additionally, testosterone was identified as a 
potential therapeutic agent targeting the biomarkers identified in this study. The expression of genes in the 
biomarker panel in CD and RA was confirmed through quantitative PCR. 
Conclusion: Our study revealed some core genes shared between CD and RA and established a novel biomarker 
panel with potential implications for the diagnosis and treatment of these diseases. 
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disease diagnosis and advancing the development of 
therapeutic drugs. 
 
In this study, we analyzed transcriptomic data of  
CD and RA to identify shared core biomarkers. 
Subsequently, we investigated the mechanism by 
which these biomarkers influence molecular signaling 
pathways and their effect on immune cell infiltration. 
We validated our findings in an independent external 
cohort of patients, confirming the biomarkers’ 
specificity to CD and RA. Finally, we constructed 
microRNA (miRNA)−mRNA co-expression networks 
and protein–protein interaction networks for these 
biomarkers, leading to the identification of potential 
therapeutic agents for the treatment of both CD 
and RA. 
 
In summary, this study offers novel insights into the 
diagnosis and treatment of CD and RA by elucidating 
the shared molecular mechanisms that underlie their 
pathogenesis. 
 
MATERIALS AND METHODS 
 
Data acquisition and preparation 
 
The datasets utilized in this study were obtained from 
the Gene Expression Omnibus (GEO) database. We 
employed the keywords “Crohn’s disease” and 
“rheumatoid arthritis” as search terms, excluding all 
datasets involving treatment measures. To further 
mitigate the effect of a single sample source, we 
selected CD datasets (GSE75214 and GSE102133, 
platform = “GPL570”) and RA datasets (GSE55457 
and GSE55235, platform = “GPL96”) from distinct 
institutions while ensuring they were based on the 
same microarray platform as the discovery cohort. 
Subsequently, the datasets in the discovery cohort 
were merged separately using the R packages “dplyr” 
and “sva” to eliminate batch effects. Unsupervised 
principal component analysis (PCA) was then 
performed on the discovery cohort using the R 
package “ggbiplot.” 
 
The GSE16879, GSE20881, and GSE179285 datasets 
served as validation cohorts for CD, while the 
GSE77298 dataset served as the validation cohort for 
RA. Additionally, the GSE48958 dataset for ulcerative 
colitis (UC) and the GSE82107 dataset for arthritis 
were used as supplementary control cohorts for other 
diseases. In addition, in cases where the dataset’s 
maximum value exceeded 100, the data were log-
transformed using the following formula: log2(x+1). 
Detailed information about the datasets used in this 
study is provided in Table 1. 

Identification of differentially expressed genes 
(DEGs) 
 
Differential gene analysis was performed using the R 
package “limma.” The criteria for identifying DEGs 
were defined as a |log2 fold change| > 1 with a P-value 
<0.05. Volcano plots and heatmaps depicting the DEGs 
were generated using the “ggplot2” and “ggpheatmap” 
functions. The DEGs that were observed in both the CD 
and RA datasets were identified and represented 
visually using the R package “ggVennDiagram.” 
 
Identification of core DEGs 
 
The shared DEGs in both the CD and RA discovery 
cohorts were identified using the least absolute 
shrinkage and selection operator (LASSO) algorithm 
with 10-fold cross-validation. The most optimal gene 
combinations were identified based on the minimum 
lambda values. This analysis was conducted using the R 
package “glmnt,” and the results were visually 
represented using the R package “ggplot2.” The most 
optimal biomarker combinations from the CD and RA 
discovery cohorts were intersected to identify common 
core biomarkers for CD and RA, and the results were 
visually presented using the R package “ggVennDiagram.” 
 
Consensus clustering 
 
Using the identified biomarkers, we performed a 
consensus clustering analysis based on resampling in 
the discovery cohort. This analysis was executed using 
the “ConsensusClusterPlus” package in R [6]. 
Consensus score matrices and cumulative distribution 
function (CDF) curves were employed to determine the 
optimal number of clusters in the CD and RA discovery 
cohorts. Finally, we considered the optimal number of 
clusters for both the CD and RA discovery cohorts as k 
= 2 and employed this to divide the discovery cohort 
into two distinct subtypes, referred to as “cluster 1” and 
“cluster 2.” 
 
Gene function annotation enrichment analysis 
 
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses were 
performed on the DEGs among the various subtypes. 
Subsequently, the biological processes and signaling 
pathways associated with the biomarker panel were 
identified. To assess the associations between the 
biomarker panel and these signaling pathways, we 
employed gene set enrichment analysis (GSEA). This 
assessment was conducted using the R package 
“clusterProfiler” [7], and the results were visualized 
with the R packages “ggplot2” and “GseaVis.” 
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Table 1. Information from the microarray dataset included in this study. 

GEO accession Platform Samples Source tissue Attribute 
GSE75214 GPL6244 75 CD and 22 Normal Mucosal Discovery cohort 
GSE102133 GPL6244 65 CD and 12 Normal Mucosal Discovery cohort 
GSE55235 GPL96 10 RA and 10 Normal Synovial Discovery cohort 
GSE55457 GPL96 13 RA and 10 Normal Synovial Discovery cohort 
GSE48958 GPL6244 13 UC and 8 Normal Mucosal Validation cohort 
GSE82107 GPL570 13 OA and 7 Normal Synovial Validation cohort 
GSE16879 GPL570 73 CD and 12 Normal Mucosal Validation cohort 
GSE20881 GPL1708 99 CD and 73 Normal Mucosal Validation cohort 
GSE179285 GPL6480 168 CD and 31 Normal Mucosal Validation cohort 
GSE77298 GPL570 16 RA and 7 Normal Synovial Validation cohort 

Abbreviations: GEO: Gene Expression Omnibus; CD: Crohn’s disease; RA: Rheumatoid arthritis; UC: ulcerative colitis; OA: 
osteoarthritis. 
 
Immune infiltration analysis 
 
Immune infiltration analysis of the CD and RA 
discovery cohorts was performed employing single-
sample GSEA (ssGSEA) [8], ESTIMATE, and 
CIBERSORT [9]. In this study, the ssGSEA immune 
score was defined as the sum of all immune cell scores 
within the same sample species. This procedure was 
executed using the R packages “GSVA” and “estimate,” 
along with the “CIBERSORT” function. 
 
Construction of a protein–protein interaction 
network 
 
We obtained a list of protein–protein interactions among 
the five genes in the biomarker panel from the STRING 
database (https://cn.string-db.org/) [10], which was 
employed to construct a protein–protein interaction 
network using the GeneMANIA database (http:// 
genemania.org/) [11]. 
 
Construction of a miRNA–mRNA co-expression 
network 
 
To target the five genes constituting the shared core 
biomarkers between CD and RA, we identified  
the miRNAs capable of targeting these genes 
employing data from three databases: TargetScan 
(https://www.targetscan.org/vert_80/) [12], miRWalk 
(http://mirwalk.umm.uni-heidelberg.de/), and miRDB 
(https://mirdb.org/) [13]. Subsequently, we constructed 
and visualized the miRNA-RNA co-expression network 
using Cytoscape 3.8.2 software [14]. 
 
Identification of potential therapeutic compounds 
and molecular docking 
 
We identified compounds targeting the five genes in the 
biomarker panel using the Drug Gene Interaction (DGI) 

database (https://dgidb.org/) [15]. Subsequently, we 
constructed and visualized the action networks of the 
identified compounds using Cytoscape. Information 
regarding the structures of the compounds and their 
respective target proteins was obtained from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/) and the PDB 
database (https://www.rcsb.org/), respectively. Molecu-
lar docking was performed using Autodock Vina [16] 
with an exhaustiveness value set at 10. The Grix box 
centers for testosterone (PubChem CID: 6013) and C-
X-C motif chemokine ligand 10 (CXCL10) (PDB ID: 
1LV9) were positioned at x = 4.028, y = −0.351, and  
z = −4.536, with a Grix box size of x = 36.0, y = 23.25, 
and z = 21.75. Additionally, the Grix box centers for 
testosterone in conjunction with aquaporin 9 (AQP9) 
(PDB ID: 6QZJ) were set at x = −6.926, y = 11.231, and 
z = −119.111, with a Grix box size of x = 126, y = 126, 
and z = 126. The results of the molecular docking were 
visualized utilizing PyMOL 2.2.0 software. 
 
Quantitative PCR (q-PCR) 
 
As previously reported [17], a q-PCR assay was 
employed to assess alterations in the mRNA 
expression of CXCL10, CXCL9, SPP1 (secreted 
phosphoprotein 1), AQP9, and MT1M (metallothionein 
1M). Briefly, total RNA was extracted from frozen 
mouse colonic mucosal tissues using TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA), and subsequently, 
purified complementary DNA was synthesized through 
reverse transcription of the isolated RNA. The 
Synergistic Branding (SYBR) Green assay (Applied 
Biosystems, Carlsbad, CA, USA) was employed for 
quantifying target gene transcription, according to the 
manufacturer’s protocol. The relative expression of  
the target genes, normalized to the expression of 
glyceraldehyde-3-phosphate dehydrogenase, was 
determined using the 2−ΔΔCT method. The sequences of 
the primers used in the assay are provided in Table 2. 
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Table 2. Sequences of primers used for q-PCR. 

Gene Forward primer Reverse primer 

CXCL10 AATCATCCCTGCGAGCCTATCC TGTGCGTGGCTTCACTCCAGTT 
CXCL9 CATCATCTTCCTGGAGCAGTGTGG AGTCTTCCTTGAACGACGACGAC 
SPP1 CAAACGCCGACCAAGGAAAA GGCCACAGCATCTGGGTATT 
AQP9 CCCAGCTGTGTCTTTAGCAA AAGTCCATCATAGTAAATGCCAAA 
MT1M AATAGAACAAGCTGCACAAC TGGCTCAGTATCGTATTGAA 
GAPDH ATGACCACAGTCCATGCCATCAC ATGCCTGCTTCACCACCTTCTTG 

 
 
Statistical analysis 
 
Statistical analysis was conducted using R, version 4.2.0 
(the R Project for Statistical Computing). Given that the 
sequencing data exhibited a non-normal distribution, all 
analyses in this study employed nonparametric tests. 
Group comparisons were performed using the unpaired 
Wilcoxon test, while correlation analysis was performed 
using the Spearman correlation. Receiver operating 
characteristic (ROC) curve analysis and the computation 
of the area under the curve (AUC) were conducted using 
the “pROC” package in R. A significance level of  
P < 0.05 was considered statistically significant. 
 
Data availability statement 
 
The datasets used in this study were obtained from  
the public database Gene Expression Omnibus 
(https://www.ncbi.nlm.nih.gov/geo/). The numbers of 
all datasets have been indicated in the article. 
 
RESULTS 
 
Identification of shared DEGs in CD and RA 
datasets 
 
The study design flowchart is shown in Figure 1. 
Unsupervised clustering PCA was performed on the CD 
cohort, comprising the GSE75214 and GSE102133 
datasets. The results revealed differences in gene 
expression profiles between the CD and normal groups 
(Figure 2A). Subsequently, DEG analysis yielded a 
volcano plot illustrating genes that exhibited differential 
expression between the CD and normal groups (Figure 
2B), with an accompanying unsupervised clustering 
heatmap of the DEGs displayed in Figure 2C. The 
results showed that most DEGs were upregulated in the 
CD group. The analysis of the RA cohort, 
encompassing the GSE55457 and GSE55235 datasets, 
revealed significant differences in gene expression 
between the RA and normal groups. Moreover, these 
DEGs could be used to distinguish between RA and 
normal samples (Figure 2D–2F). When comparing the 

DEGs between the CD and RA cohorts, the DEGs 
CXCL10, CXCL11, MMP3 (matrix metallopeptidase 3), 
CXCL9, MMP1, SPP1, MXRA5 (matrix remodeling 
associated 5), and AQP9 were found to be upregulated 
(Figure 2G), while the DEGs MT1M and PCK1 
(phosphoenolpyruvate carboxykinase 1) were observed 
to be downregulated in both cohorts (Figure 2H). Given 
the similar expression patterns of these genes in both 
the CD and RA cohorts, we propose that these 10 DEGs 
may be involved in a shared disease mechanism linking 
CD and RA. 
 
Construction of a biomarker panel for the diagnosis 
of CD and RA 
 
To identify the core DEGs implicated in the 
pathological manifestations of CD and RA, we 
performed LASSO regression with 10-fold cross-
validation using the common DEGs identified. The core 
genes for CD and RA were identified based on the best 
lambda values obtained (Figure 3A, 3B). We identified 
five genes (CXCL10, CXCL9, AQP9, SPP1, and MT1M) 
that were present in both CD and RA in the best 
LASSO model when comparing the results (Figure 3C). 
Therefore, we considered these five genes as core DEGs 
and formed a novel biomarker panel for subsequent 
analysis. Expression analysis of these core DEGs in the 
biomarker panel showed significantly higher levels of 
CXCL10, CXCL9, AQP9, and SPP1 in lesion tissues 
compared to normal tissues (Figure 3D, 3F). In contrast, 
MT1M expression was significantly lower in lesion 
tissues. To assess the diagnostic utility of the biomarker 
panel for CD and RA, we conducted ROC analysis, 
which suggested that the biomarker panel exhibited 
outstanding discriminatory performance in the 
discovery cohort (AUC = 0.938 and 0.968, respectively) 
(Figure 3E, 3G). These results underscore the pivotal 
roles played by these biomarkers in the pathogenesis of 
CD and RA. However, we found that the expression 
levels of these core biomarkers in several other 
inflammatory diseases, such as UC and osteoarthritis 
(OA), were not consistent with those in the CD and RA 
cohorts (Supplementary Figure 1). 
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Identification of molecular subtypes based on the 
biomarker panel and functional enrichment analysis 
 
To further explore the involvement of the core 
biomarkers in disease pathogenesis, we subdivided the 
CD cohort into two novel CD subtypes, namely cluster 1 

and cluster 2, based on a consensus clustering approach 
applied to the biomarker panel (Figure 4A, 4B). 
Subsequently, we verified the expression of these core 
biomarkers in both subtypes, and the results showed 
that the expression levels of four genes — CXCL10, 
CXCL9, AQP9, and SPP1 — were significantly higher 

 

 
 

Figure 1. Workflow of the study. Abbreviations: GEO: Gene Expression Omnibus; CD: Crohn’s disease; RA: rheumatoid arthritis; LASSO: 
least absolute shrinkage and selection operator; UC: ulcerative colitis; OA: osteoarthritis; KEGG: Kyoto Encyclopedia of Genes and 
Genomes; GSEA: gene set enrichment analysis. 
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in cluster 2 than in cluster 1 (Figure 4C). In contrast, 
MT1M displayed a significantly lower expression level 
in cluster 1 as opposed to cluster 2, consistent with the 
expression patterns of these core biomarkers in normal 

and CD samples. Therefore, cluster 2 was defined as 
“high-risk” for CD occurrence and progression, while 
cluster 1 was categorized as “low-risk.” Furthermore, an 
unsupervised clustering PCA demonstrated a significant

 

 
 

Figure 2. Identification of common differential genes between CD and RA. (A) Unsupervised clustering PCA plot for CD discovery 
cohort. (B) Volcano map of differential genes in the CD discovery cohort. (C) Unsupervised clustering heatmap of differential genes in the 
CD discovery cohort. (D) Unsupervised clustering PCA plot for the RA discovery cohort. (E) Volcano map of differential genes in the RA 
discovery cohort. (F) Unsupervised clustering heatmap of differential genes in the CD discovery cohort. (G) Venn diagram of co-upregulated 
differential genes in the CD and RA discovery cohorts. (H) Venn diagram of co-downregulated differential genes in the CD and RA discovery 
cohorts. Abbreviations: PCA: principal component analysis; CD: Crohn’s disease; RA: rheumatoid arthritis. 
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difference between the high-risk and low-risk groups 
(Figure 4D). A volcano plot showcased differences in 
gene expression between these two groups, highlighting 

genes with significantly elevated expression levels in 
the high-risk group (Figure 4E). Functional annotation 
of the DEGs showed that the key biological processes 

 

 
 

Figure 3. Identification of core genes and construction of a biomarker panel for the diagnosis of CD and RA. (A) Graph 
depicting the best LASSO model parameters and coefficients in the CD discovery cohort. (B) Graph depicting the best LASSO model 
parameters and coefficients in the RA discovery cohort. (C) Venn diagram displaying core genes in the CD and RA discovery cohorts. 
(D) Differential expression analysis of five core genes in the CD discovery cohort. (E) ROC analysis and AUC calculation for determining the 
diagnostic utility of a biomarker panel consisting of the five core genes in CD. (F) Differential expression analysis of five core genes in the RA 
discovery cohort. (G) ROC analysis and AUC calculation for determining the diagnostic utility of a biomarker panel consisting of the five core 
genes in RA. Abbreviations: LASSO: least absolute shrinkage and selection operator; CD: Crohn’s disease; RA: rheumatoid arthritis; ROC: 
receiver operating characteristic; AUC: area under the curve. **P < 0.01; ****P < 0.0001. 
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linked to the biomarker panel identified in this study 
encompassed neutrophil chemotaxis, neutrophil 
migration, granulocyte chemotaxis, and leukocyte 
migration (Figure 4F). Additionally, KEGG analysis 

showed that tumor necrosis factor (TNF), chemokine, 
interleukin-17 (IL-17), and toll-like receptor (TLR) 
signaling pathways are most closely associated with the 
biomarker panel (Figure 4G). Furthermore, GSEA

 

 
 

Figure 4. Functional annotation of core genes in the biomarker panel based on consensus clustering in CD. (A) Consensus 
score matrix of all samples when the number of clusters (k) is 2. (B) CDF curves of the consistency matrix for each k-value. (C) Differential 
analysis of the five core genes in the two subtypes (cluster 1 and cluster 2) obtained by consensus clustering. (D) Unsupervised PCA plots of 
samples in two new groups (high-risk and low-risk). (E) Volcano plots of DEGs in the high-risk and low-risk groups. (F) Gene ontology 
biological process and (G) KEGG enrichment analysis of DEGs between the high-risk and low-risk groups. GSEA of (H) TNF, (I) IL-17, and 
(J) Toll-like receptor signaling pathways. Abbreviations: CDF: cumulative distribution function; PCA: principal component analysis; KEGG: 
Kyoto Encyclopedia of Genes and Genomes; DEG: differentially expressed gene; GSEA: gene set enrichment analysis; TNF: tumor necrosis 
factor. ****P < 0.0001. 
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demonstrated significant upregulation of TNF, IL-17, 
and TLR signaling pathways in the high-risk group 
compared to the low-risk group (Figure 4H–4J).  
 
We performed the same analysis in the RA cohort  
and discovered that the biomarker panel identified in 
this study was associated with RA progression 
(Supplementary Figure 2). 

Immune infiltration analysis of molecular subtypes 
based on the biomarker panel 
 
We performed immune infiltration analyses on CD 
subtypes using the ssGSEA algorithm. The results 
showed significant differences in immune cell 
infiltration levels and immune scores between the  
high-risk and low-risk groups (Figure 5A, 5B). The 

 

 
 

Figure 5. Immuno-infiltration analysis of core genes in CD. (A) Heatmap of immune cell type scores based on ssGSEA. (B) Differential 
analysis of the sum of immune scores based on ssGSEA. (C) Differential analysis of immune cell type scores based on ssGSEA. (D) Correlation 
heatmap of core genes and immune cell types. (E) Differential analysis of immune scores based on ESTIMATE. (F) Differential analysis of 
ESTIMATE scores. Abbreviation: ssGSEA: single-sample gene set enrichment analysis. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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bowel tissues from the high-risk group exhibited higher 
levels of immune cell infiltration, including macro-
phages, neutrophils, T helper type 1 (Th1) cells and T 
helper type 17 (Th17) cells, than those in the bowel 
tissues from the low-risk group (Figure 5C). Employing 
Spearman correlation analysis, we confirmed that the 
expression levels of CXCL10, CXCL9, AQP9, and SPP1 
were significantly and positively correlated with the 
numbers of most immune cell types in the immune 
infiltrates; however, the most significant correlation was 
observed with neutrophils (Figure 5D). In contrast, 
MT1M expression levels exhibited a negative correlation 
with immune cell infiltration levels. In addition, we 
assessed immune infiltration levels in the high-risk and 
low-risk groups using the ESTIMATE and CIBERSORT 
algorithms. The results were consistent with those 
obtained through the ssGSEA algorithm, the high-risk 
group displayed higher levels of immune infiltration 
compared to those from the low-risk group (Figure 5E, 
5F; Supplementary Figure 3). 
 
In addition, we validated the relationship between the 
biomarker panel and immune infiltration levels in the 
RA cohort and reaffirmed the elevated immune 
infiltration levels in the high-risk group (Supplementary 
Figure 4). 
 
Evaluation of the diagnostic significance of the 
biomarker panel in validation cohort 
 
We validated the identified biomarkers by assessing the 
expression levels of the genes in several independent 
GEO datasets. The results indicated elevated expression 
levels of CXCL10, CXCL9, AQP9, and SPP1 in CD 
samples across the CD datasets GSE16879, GSE20881, 
and GSE179285, aligning with our initial findings in the 
discovery CD cohort (Figure 6A, 6C, 6E). In contrast, 
MT1M exhibited reduced expression levels in CD 
samples compared to normal samples. All selected 
biomarkers exhibited robust discriminatory performance 
between CD samples and normal samples (AUC = 
0.872, AUC = 0.716, and AUC = 0.761 for GSE16879, 
GSE20881, and GSE179285, respectively), as 
determined through 10-fold cross-validated ROC 
analysis (Figure 6B, 6D, 6F). In the GSE179285 
dataset, CXCL10, CXCL9, AQP9, and SPP1 displayed 
increased expression in samples with inflammation, 
while MT1M exhibited higher expression levels in 
samples without inflammation (Figure 6G). The 
selected biomarkers also demonstrated strong 
discriminative performance between samples with 
inflammation and those without inflammation (AUC = 
0.886) (Figure 6H). 
 
In addition, we validated the identified biomarkers for 
RA diagnosis using the GSE77298 dataset. The results 

demonstrated the efficacy of the selected biomarkers in 
distinguishing RA samples from normal samples in this 
validation cohort (AUC = 0.794) (Supplementary 
Figure 5). 
 
Construction of biomarker interaction networks and 
identification of therapeutic compounds 
 
To elucidate the molecular mechanisms underlying the 
influence of the selected biomarkers on disease 
pathology, we initially constructed an miRNA–mRNA 
co-expression network for these biomarkers. The results 
showed that 55 miRNAs possessed the potential to 
target these core biomarkers. Among these, miR-181c-
5p emerged as a candidate capable of targeting both 
CXCL9 and SPP1 (Supplementary Figure 6). In 
addition, we established a protein–protein interaction 
network by leveraging data from the STRING and 
GeneMANIA databases (Figure 7A). Subsequently, we 
employed the DGI database to identify compounds with 
the potential to inhibit the functions of these 
biomarkers, leading to the identification of 22 
compounds targeting CXCL10, AQP9, and SPP1 
proteins (Figure 7B). Among these compounds, 
testosterone emerged as a potential co-acting compound 
with the ability to target AQP9 and CXCL10. The 
binding of testosterone to CXCL10 and AQP9 was 
subsequently confirmed through molecular docking 
simulations. The results showed that testosterone 
formed hydrogen bonds with Arg-38 in CXCL10 at a 
distance of 2.8 Å (Figure 7C) and with Arg-229 in 
AQP9 at a similar distance of 2.8 Å (Figure 7D). These 
results suggest that testosterone can be used to target 
CXCL10 and AQP9. 
 
Validation of genes in the biomarker panel by q-
PCR 
 
To validate the expression of the biomarker panel, we 
performed q-PCR on both CD lesions and normal 
intestinal tissues. The human intestinal tissues 
utilized in this research were sourced from patients 
undergoing intestinal resection at the Department of 
Gastrointestinal Surgery, Shandong Provincial Third 
Hospital, with all patients consenting through signed 
informed consent forms. The Crohn's Disease (CD) 
lesion tissues were obtained from CD patients who 
underwent local intestinal resection, while the normal 
intestinal tissues were obtained from constipated 
patients who underwent total colectomy. The results 
demonstrated significant upregulation of four genes, 
specifically CXCL10, CXCL9, AQP9, and SPP1, in 
CD-afflicted tissues (P < 0.05) (Figure 8A–8D). 
Conversely, MT1M exhibited heightened expression 
levels in normal tissues (P < 0.05) (Figure 8E). 
Furthermore, the expression of the five genes in the 
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biomarker panel was verified using serum samples 
from patients with and without RA. The results 
indicated elevated levels of CXCL10, CXCL9, AQP9, 
and SPP1 in the serum of patients with RA (P < 
0.05), while M1TM demonstrated lower expression in 
the serum of patients with RA (P < 0.05) 
(Supplementary Figure 7). These results were 
consistent with the transcriptomic data, affirming the 
reliability of the biomarker panel. 
 

DISCUSSION 
 
In this study, we identified shared core genes between 
CD and RA. The primary findings are as follows:  
(1) A biomarker panel comprising common core genes, 
specifically CXCL10, CXCL9, AQP9, SPP1, and 
MT1M, effectively distinguished CD/RA samples from 
normal samples in both discovery and validation 
cohorts. (2) Utilizing the biomarker panel, we observed 

 

 
 

Figure 6. Verification of the diagnostic utility of the biomarker panel in CD validation cohorts. (A) Expression analysis and 
(B) ROC curve analysis of core genes in the GSE16879 dataset. (C) Expression analysis and (D) ROC curve analysis of core genes in the 
GSE20881 dataset. (E) Expression analysis and (F) ROC curve analysis of core genes in the GSE179285 dataset. (G) Core gene expression 
analysis and (H) ROC curve analysis of samples with and without inflammation in the GSE179285 dataset. Abbreviations: ROC: receiver 
operating characteristic; AUC: area under the curve. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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significantly higher levels of immune cell infiltration in 
the high-risk groups compared to the low-risk groups. 
(3) Testosterone emerged as a potential therapeutic 
agent for CD and RA, as it exhibited the capacity to 
target some of the common core biomarkers in the 
biomarker panel. 

Recently, both CD and RA have gained recognition as 
immune-mediated inflammatory conditions that 
frequently induce systemic inflammation [18, 19]. CD 
and RA are frequently treated with the same 
medications, implying common underlying pathological 
processes [4, 20]. To investigate the similarities 

 

 
 

Figure 7. Construction of protein–protein interaction network and drug–gene action network. (A) Protein–protein interaction 
network of core genes. (B) Drug–gene interaction network of core genes. (C) Molecular docking of testosterone binding to CXCL10. 
(D) Molecular docking of testosterone binding to AQP9. 

 
 

 
 

Figure 8. Validation of biomarker panel expression in CD lesions and normal tissues by q-PCR. Differential comparison 
of mRNA expression levels of CXCL10 (A), CXCL9 (B), SPP1 (C), AQP9 (D), and MT1M (E) in CD and normal tissues. **P < 0.01; ****P < 0.0001. 
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between CD and RA, we conducted bioinformatics 
analysis and found that several genes are differentially 
expressed (compared to normal tissues) in both CD and 
RA. Among the several DEGs identified in this study, 
five genes, namely CXCL10, CXCL9, AQP9, SPP1, and 
MT1M, were identified as core genes. Furthermore, we 
found that the biomarker profiles of these core genes 
exhibited the same expression patterns in the validation 
cohorts of both CD and RA. Moreover, these patterns 
were not observed in other types of inflammatory 
disease cohorts, such as UC and OA. These findings 
confirmed that the selected biomarkers exhibit specific 
expression patterns in CD and RA. 
 
Several studies have suggested that CXCL10 and 
CXCL9 can serve as markers of disease activity in 
both CD and RA and play roles in the pathogenesis of 
these diseases [21, 22]. Several drugs targeting the 
CXCL10 protein have undergone clinical trials as 
potential treatment for autoimmune and inflammatory 
diseases [23]. In the pathophysiology of CD, CXCL10 
functions as a ligand for the CXCR3 receptor, 
triggering the recruitment of T lymphocytes and 
contributing to the persistence of mucosal 
inflammation [24]. In RA, CXCL10 is primarily 
expressed by macrophage-like cells and fibroblast-like 
synoviocytes (FLS) infiltrating the synovium. The 
interaction between CXCL10 and the nuclear factor 
kappa-B ligand (RANKL), as well as other cytokines 
(e.g., TNF-α), may initiate and/or aggravate 
inflammation and bone erosion in RA [25]. Similar to 
CXCL10, CXCL9 serves as a ligand for CXCR3, 
facilitating the aggregation of T cells within the 
inflamed intestine regions in CD and Th1 cells in the 
synovium in RA [26, 27]. These findings suggest that 
both CXCL9 and CXCL10 may foster the progression 
of inflammation by promoting immune cell 
aggregation in CD and RA. These findings are 
consistent with the results of our immune infiltration 
analyses conducted in this study, further reinforcing 
the potential usefulness of the biomarker panel. 
 
AQP9 is involved in the pathogenesis of various 
inflammatory diseases and holds promise as a potential 
biomarker for clinical diagnosis [28, 29]. Previous 
studies have shown an upregulation in the mRNA and 
protein expression of AQP9 in human neutrophils and 
primary blood-derived macrophages following 
lipopolysaccharide stimulation [30]. AQP9 has been 
suggested to play a role in leukocyte motility by 
facilitating cell extension and stabilizing the lamellar 
substrate [31]. Additionally, it is involved in the 
regulation of cellular volume changes, a crucial factor 
enabling leukocytes to effectively migrate towards 
chemoattractants [31]. A previous study also 
considered AQP9 as a universal inflammatory marker 

for the diagnosis of CD and RA, which aligns with our 
findings [32]. 
 
The SPP1 gene encodes human osteopontin (OPN),  
an arginine-glycine-aspartate domain-containing 
phosphoprotein predominantly expressed in epithelial 
cells, activated T cells, macrophages, and osteoblasts 
[33]. Previous studies have demonstrated the production 
of OPN by plasma cells in the mucosa of CD lesions, 
where it acts as a potent IL-12 inducer in CD intestinal 
mucosal macrophages, playing a crucial role in 
establishing the Th1 cytokine milieu necessary for 
chronic inflammation in CD [34]. In the context of RA 
pathology, FLS produce OPN at sites of cartilage 
invasion and in the synovial lining [35]. This leads to 
the attachment of FLS to cartilage and the production of 
MMP1 in chondrocytes, which, in turn, promotes the 
degradation of the extracellular matrix. In addition, 
OPN may contribute to the induction and onset of 
arthritis by polarizing the Th1 cytokine response and 
fostering bone resorption by osteoclasts [36]. The 
results of these studies indicate that SPP1 is 
predominantly expressed in immune cells within 
diseased tissues in both CD and RA. This suggests that 
SPP1 may have significant diagnostic value and is 
closely associated with immune infiltration, a finding 
consistent with our own findings. 
 
MT1M encodes a protein belonging to the cysteine-rich 
metallothionein family, known for its ability to bind 
heavy metals via cysteine thiol groups [37]. Reduced 
levels of MT1M increase oxidative stress by altering the 
regulation of superoxide radicals and indirectly by 
affecting zinc metabolism. Low MT1M levels lead to a 
redox imbalance and an inability to maintain an 
adequate reducing environment, which in turn leads to 
oxidative stress [38]. Previous studies have suggested 
an association between MT1M and cuproptosis, noting 
lower expression levels in CD tissues than in normal 
tissues, as well as a negative correlation with immune 
cell infiltration [39]. Consistent with these previous 
findings, MT1M expression was also reduced in CD 
lesion tissues in this study. In addition, we also found a 
decrease in MT1M expression in RA lesion tissues; 
however, these findings warrant further validation. 
 
Aberrant TNF signaling has been thought to play a 
significant role in the pathogenesis of inflammatory 
diseases such as CD and RA [40, 41]. Previous studies 
have demonstrated that the IL-17 signaling pathway is 
closely linked to the pathogenesis of CD [42]. Similarly, 
excessive activation of TLR signaling has been 
suggested as a risk factor for CD [43]. In this study, we 
found that biomarkers common to CD and RA were 
associated with the activation of the TNF, IL-17, and 
TLR signaling pathways in the CD cohort. Additionally, 
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in the RA cohort, we found that these biomarkers 
activated RA signaling and immune response signaling 
pathways. These findings lend theoretical support to the 
notion that extraintestinal arthropathy in CD may be 
linked to RA and corroborate the pathological 
significance of the biomarkers identified in this study in 
both RA and CD. 
 
In patients with CD, there is a generalized increase in 
immune cell infiltration and activation in the intestinal 
mucosa, which is thought to exacerbate local 
inflammation [44, 45]. In this study, we discovered that 
the high-risk group of patients with CD exhibited higher 
levels of immune infiltration and higher expression 
levels of the identified biomarkers compared to the low-
risk group. This suggests that the biomarkers identified 
in this study may play a role in modulating immune 
activity in the CD microenvironment. Similarly, the 
pathological manifestations of RA are primarily caused 
by infiltrating immune cells [46, 47]. We found that the 
high-risk group of patients with RA also displayed 
higher expression levels of the biomarkers identified in 
this study, along with heightened immune infiltration 
scores, compared to the low-risk group. The high-risk 
groups exhibited active immune infiltrates, aligning 
with the immune activity in the pathological processes 
of both CD and RA. These findings suggest that the 
immune mechanisms underlying CD and RA may share 
similarities and further imply that the identified 
biomarkers exert an influence on the altered immune 
activity in the pathological processes. 
 
Previous studies have reported the significant role of 
miRNAs in the development and progression of both 
CD and RA [19, 48]. Therefore, we constructed 
miRNA–mRNA co-expression networks to investigate 
the molecular regulatory mechanisms of the identified 
biomarkers at the transcriptional level. We found that 
55 miRNAs exhibited co-expression with the core 
biomarkers, shedding light on potential regulatory 
mechanisms for a more in-depth investigation of these 
diseases. In addition, the protein–protein interaction 
network we constructed revealed that the regulatory 
mechanisms underlying the common biomarkers of CD 
and RA are linked to TNF, IL-1β, and IL-6 signaling 
pathways. These pro-inflammatory factors play a 
crucial pathogenic role in the development of CD  
[49, 50]. Our findings potentially provide novel 
theoretical support for the existence of a shared 
molecular mechanism connecting the pathogenesis of 
CD and RA, particularly in the context of extra-
intestinal arthropathy in CD. 
 
Recently, the same therapeutic agents have often been 
employed to treat both CD and RA [4, 51], confirming 
the existence of similar pathologies in CD and RA. This 

also suggests that drug discovery based on common 
pathological alterations shared between these two 
diseases may yield more rational choices for clinical 
treatment. In this study, we found that testosterone can 
target both CXCL10 and AQP9 proteins, which were 
identified as common biomarkers for CD and RA. In 
addition, the binding of testosterone to CXCL10 and 
AQP9 was confirmed through molecular docking. 
According to previous reports, serum testosterone levels 
are reduced in patients with inflammatory bowel 
disease, and testosterone treatment can alleviate 
inflammation and reduce disease burden by inhibiting 
the expression of pro-inflammatory cytokines [52, 53]. 
Thus, our findings provide theoretical support for using 
testosterone as a potential treatment option for CD and 
RA, especially in cases of extra-intestinal arthropathy 
associated with CD. 
 
In this study, we highlighted the potential role of core 
biomarkers common to CD and RA. Nonetheless, our 
study has a few limitations, which we briefly delineate 
as follows: (1) Despite the relatively large sample size 
of the discovery cohort and the validation of the 
expression and diagnostic utility of the core genes 
across other datasets, it remains imperative to conduct 
external validation. (2) The biological functions of the 
core genes need to be more comprehensively validated 
using in vivo and in vitro models. Our forthcoming 
research endeavors will be directed towards addressing 
this aspect. 
 
To the best of our knowledge, our study investigated the 
coexistence of pathogenic and protective molecules in 
both CD and RA for the first time. Additionally, we 
utilized the LASSO algorithm to identify core genes and 
subsequently constructed a novel biomarker panel. 
More notably, these molecules may exert their effects 
on the disease process by modulating the type and 
quantity of immune cells within the lesion tissues of 
both CD and RA, either facilitating an increase or 
decrease. Indeed, in multiple validation cohorts, we 
observed that the novel biomarker panel comprising 
these molecules exhibited excellent diagnostic 
performance for both CD and RA. Furthermore, this 
was confirmed by conducting validation experiments 
using CD tissue samples and RA serum samples. In 
conclusion, our study offers partial theoretical support 
for the existence of similar molecular mechanisms in 
both CD and RA, thereby providing novel insights into 
the diagnosis and treatment of these diseases. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. Validate the expression of the core genes in the UC and OA cohorts. (A) Differential expression 
analysis of 5 core genes in the UC cohort. (B) Differential expression analysis of 5 core genes in the OA cohort. Abbreviations: UC: ulcerative 
colitis; OA: osteoarthritis; ns: no significance. *P < 0.05 **P < 0.01. 
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Supplementary Figure 2. Functional annotation of core genes in the biomarker panel based on consensus clustering in RA. 
(A) Consensus score matrix of all samples when the number of clusters k = 2. (B) CDF curves of the consistency matrix for each k-value. 
(C) Differential analysis of the five core genes in the two subtypes (cluster 1 and cluster 2) obtained by consensus clustering. 
(D) Unsupervised PCA plots of samples in two new groups (high-risk and low-risk). (E) Volcanoes of differentially expressed genes in high-
risk and low-risk group. (F) Gene ontology biological process and (G) KEGG enrichment analysis of DEGs between high-risk and low-risk. 
GSEA analysis of (H) Immune Response, and (I) Rheumatoid Arthritis signaling pathways. Abbreviations: CDF: cumulative distribution 
function; PCA: Principal Component Analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; DEG: Differentially Expressed Gene; GSEA: 
Gene Set Enrichment Analysis; TNF: tumor necrosis factor. **P < 0.01, ****P < 0.0001. 
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Supplementary Figure 3. Differential analysis of immune cell type scores based on CIBERSORT. *P < 0.05; ****P < 0.0001. 
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Supplementary Figure 4. Immuno-infiltration analysis of core genes in RA. (A) Heat map of immune cell type scores based on ssGSEA. 
(B) Differential analysis of the sum of immune scores based on ssGSEA. (C) Differential analysis of immune cell type scores based on ssGSEA. 
(D) Differential analysis of ESTIMATE-based immune scores and ESTIMATE score. (E) Differential analysis of immune cell type scores based on 
CIBERSORT. Abbreviation: ssGSEA: single sample Gene Set Enrichment Analysis. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. 
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Supplementary Figure 5. Verification of the diagnostic value of the biomarker panel in RA validation cohorts. (A) Expression 
analysis and (B) ROC curve analysis of core genes in GSE77298. Abbreviations: ROC: Receiver Operating Characteristic; AUC: Area Under 
Curve; ns: no significance. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Supplementary Figure 6. Construction of miRNA-mRNA co-expression network. (A) Acquisition of core gene co-expression 
miRNA Venn diagrams based on TargetScan, miRWalk, and miRDB. (B) Visualization of co-expression networks of miRNAs and core genes. 
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Supplementary Figure 7. Validation of biomarker panel expression by q-PCR in serum samples from patients with RA and 
healthy controls. Differential comparison of mRNA expression levels of CXCL10 (A), CXCL9 (B), SPP1 (C), AQP9 (D), MT1M (E) in serum 
samples from patients with RA and healthy controls. *P < 0.05; **P < 0.01; ***P < 0.001. 
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