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INTRODUCTION 
 

Kidney cancer, medically termed renal cell carcinoma, 

emerges as a malignant tumor that originates within 

the kidney tissue. Its prevalence is on a consistent rise, 

positioning it as one of the frequently encountered 

malignancies on a global scale [1]. Complex 
heterogeneity is evident at both the clinical and 

molecular levels, as various subtypes exhibit notable 

distinctions in terms of biological characteristics, 
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ABSTRACT 
 

Background: Clear cell renal cell carcinoma(ccRCC) is one of the most common malignancies. However, there 
are still many barriers to its underlying causes, early diagnostic techniques and therapeutic approaches. 
Materials and Methods: The Cancer Genome Atlas (TCGA)- Kidney renal clear cell (KIRC) cohort differentially 
analysed liquid-liquid phase separation (LLPS)-related genes from the DrLLPS website. Univariate and 
multivariate Cox regression analyses and LASSO regression analyses were used to construct prognostic models. 
The E-MTAB-1980 cohort was used for external validation. Then, potential functions, immune infiltration 
analysis, and mutational landscapes were analysed for the high-risk and low-risk groups. Finally, quantitative 
real-time polymerase chain reaction (qRT-PCR) experiments as well as single-cell analyses validated the genes 
key to the model. 
Results: We screened 174 LLPS-related genes in ccRCC and constructed a risk signature consisting of five genes 
(CLIC5, MXD3, NUF2, PABPC1L, PLK1). The high-risk group was found to be associated with worse prognosis in 
different subgroups. A nomogram constructed by combining age and tumour stage had a strong predictive 
power for the prognosis of ccRCC patients. In addition, there were differences in pathway enrichment, immune 
cell infiltration, and mutational landscapes between the two groups. The results of qRT-PCR in renal cancer cell 
lines and renal cancer tissues were consistent with the biosignature prediction. Three single-cell data of 
GSE159115, GSE139555, and GSE121636 were analysed for differences in the presence of these five genes in 
different cells. 
Conclusions: We developed a risk signature constructed based on the five LLPS-related genes and can have a high 
ability to predict the prognosis of ccRCC patients, further providing a strong support for clinical decision-making. 
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molecular mechanisms, and responses to therapeutic 

interventions [2]. Clear cell renal cell carcinoma stands 

out as one of the prevalent forms of kidney cancer, 

encompassing the majority of cases within this category 

[3]. Emerging from the clear cells within the kidney, 

typically located in the endothelial cell lining of the 

renal tubules, this malignancy exhibits a propensity  

for heightened invasiveness and mobility. It is usually 

highly invasive and migratory, resulting in high mortality 

and poor prognosis [4, 5]. Timely diagnosis plays a 

pivotal role in the effective management and prognosis 

of ccRCC. Nevertheless, due to the frequently elusive 

symptoms during its initial phases, ccRCC tends to be 

identified at an advanced stage, thereby curtailing the 

window for prompt medical intervention [6, 7]. Despite 

notable advancements in both clinical and fundamental 

research, the understanding of kidney cancer’s patho-

genesis, the development of early diagnostic techniques, 

and the formulation of effective therapeutic approaches 

continue to encounter substantial challenges [8–10].  

As a result, the pursuit of more precise diagnostic 

indicators for the early stages of renal cancer has 

emerged as a focal point in current research endeavors. 

 
Cancer is an unbridled ailment characterized by the 

unrestrained growth of cells, orchestrated through 

intricate biochemical pathways that operate outside the 

boundaries of normal equilibrium. This equilibrium, 

although paradoxically termed non-homeostatic, hinges 

on the meticulous spatiotemporal orchestration of 

biochemical processes. Within eukaryotic cells, 

numerous organelles encased by membranes partition 

the cell into distinct compartments, each capable of 

executing specific biochemical reactions. However, 

coexisting with these membrane-bound entities are 

certain organelles lacking membranes, such as 

nucleoli, P granules in nematodes, Cajal vesicles, 

nucleosome arrays, PML nuclear bodies (NBs), foci of 

DNA damage, compartments related to X-chromosome 

inactivation (XCI), paraspeckles, ribonucleoprotein 

(RNP) granules, stress granules, proteasomes, auto-

phagosomes, and synaptic vesicle motifs [11]. These 

membrane-less structures are primarily demarcated 

through the mechanism of LLPS, wherein distinct 

components segregate based on their liquid properties 

[12–14]. LLPS plays a pivotal role in an array of 

biological processes, encompassing the modulation  

of nuclear operations, autophagy, and DNA damage 

response, among others [15–17]. Moreover, a mounting 

body of research underscores the proposition that 

irregularities in LLPS might intricately intertwine with 

the progression of cancer [18–20]. 

 
Previous studies have shown that LLPS-related gene 

markers can be used as prognostic markers in patients 

with some tumors, such as prostate cancer, endometrial 

cancer, breast cancer, hepatocellular carcinoma, and 

epithelial ovarian cancer [21–25]. Consequently, the 

primary objective of this investigation was to develop 

and substantiate a predictive model for prognosticating 

LLPS- related genes within ccRCC. Subsequent to this, 

we delved into the plausible interrelation between  

the refined model and immune infiltration as well as 

mutations. To conclude, we executed PCR validation and 

conducted single-cell analysis on the genes identified 

through screening. 

 

RESULTS 
 

Construction and validation of a prognostic 

prediction model for LLPS-related genes in ccRCC 

 

Differential expression analysis of 3611 LLPS- 

related genes from the DrLLPS database in the  

TCGA-KIRC cohort identified 114 up-regulated and 60 

down-regulated genes (Figure 1A, 1B). By univariate 

Cox regression analysis, we identified 137 prognostic 

LLPS-related genes associated with overall survival 

(Supplementary Table 2). Based on this result, the  

λ-optimal value of LASSO Cox regression analysis 

incorporated five genes (CLIC5, MXD3, NUF2, 

PABPC1L, and PLK1) to construct a risk signature 

characterization of LLPS-related genes (Figure 1C,  

1D). The risk score for each patient was calculated 

according to the following formula: Risk score = 

0.162*NUF2 expression + 0.317*PLK1 expression + 

0.107*MXD3 expression + 0.111*PABPC1L expression 

+ (-0.049)*CICL5 expression. The median risk score 

values were used to categorize patients into high- 

risk and low-risk groups. And Kaplan-Meier analysis 

revealed that the higher the risk scores of ccRCC 

patients, the lower the overall survival rate of patients 

(p=2.402e-12) (Figure 1E). To further validate the 

accuracy of the model’s prediction, the receiver operating 

characteristic (ROC) curve results showed that the 

model had a strong ability to predict the survival rates 

of ccRCC patients at 1, 3, and 5 years (corresponding to 

area under the curve (AUC) values of 0.724, 0.699, and 

0.748, respectively) (Figure 1F). 

 

We scored the risk score prediction model in the 

validation set E-MTAB-1980 cohort similarly for  

each patient, categorizing them into high- and low- 

risk groups based on the median risk score. Combined 

with survival time the same found that the overall 

survival time of patients in the high-risk group was 

significantly lower than that of patients in the low-risk 

group (Figure 1G). The ROC curve curves predicted 

AUC values of 0.873, 0.879, and 0.816 at 1, 3, and  

5 years, respectively (Figure 1H). Results from the 

TCGA-KIRC and E-MTAB-1980 cohorts consistently 

demonstrated that our constructed LLPS-related gene 
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risk signature has strong ability and accuracy for 

prognostic prediction of ccRCC patients. 

 

Risk scores and clinically relevant variables 

 

Patients were categorized into different subgroups 

according to their T, N, M, clinical and pathological 

stages. The higher the degree of malignancy, the 

higher the risk score (Figure 2A). And the Kaplan-

Meier analysis showed that the overall survival rate of 

the high-risk group was statistically significantly lower 

than that of the low-risk group in the different clinical 

subgroups, with the difference being statistically 

significant except for patients in the N1 group, where 

no statistical difference was observed (Figure 2B). 

Development and validation of a nomogram 

combining age, tumor stage, and risk score 

 

To further explore whether the risk score could  

serve as an independent risk factor for ccRCC  

patients, univariate and multivariate Cox regression 

analyses were performed in conjunction with age and 

tumor stage. The results of both TCGA-KIRC and  

E-MTAB-1980 cohort analyses indicated that the risk 

score of LLPS-related genetic features could serve  

as an independent predictor of prognosis for ccRCC 

patients (Figures 3A, 3B, 4A, 4B). Nomogram was 

further constructed to predict patients’ overall survival 

(OS) (Figures 3C, 4C). Calibration chart and C-

indexes of both cohorts showed that high agreement in 

 

 
 

Figure 1. LLPS differential gene screening and risk signature establishment and assessment. (A) Heatmap demonstrating the 

expression of LLPS-related genes in the TCGA-KIRC cohort; (B) Volcano plot demonstrating the LLPS-based expression in the TCGA-KIRC 
cohort, containing 60 down-regulated genes and 114 up-regulated genes; (C, D) LASSO Cox regression analysis was conducted to screen the 
key genes; (E) Kaplan-Meier analysis of survival differences between high-risk and low-risk groups in the TCGA-KIRC cohort; (F) ROC curves 
demonstrating the accuracy of risk-signature judgement of LLPS-related gene constructs for ccRCC patients with 1-, 3- and 5-year prognosis; 
(G) Kaplan-Meier analysis in the E-MTAB-1980 cohort to validate the survival difference between the high-risk and low-risk groups 
distinguished by this risk signature; (H) ROC curve to validate the ability of this signature to judge prognosis in the E-MTAB-1980 cohort. (*p < 
0.05, **p < 0.01, ***p < 0.001). 
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predicting patients’ survival at 1, 3, and 5 years  

with the actual survival (C-index for TCGA-KIRC 

cohort = 0.78 (se = 0.023); C-index for E-MTAB-1980 

cohort = 0.876 (se = 0.034)) (Figures 3D–3F, 4D–4F). 

The reliability of this finding was further verified by 

the AUC values corresponding to the ROC curves 

(TCGA-KIRC cohort AUC values: 0.875, 0.827, 0.838; 

E-MTAB-1980 cohort AUC values: 0.933, 0.952, 

0.897, respectively) (Figures 3G, 4G). 

 

Differences in potential functional and pathway 

enrichment analyses between patients in high- and 

low-risk groups 

 

The results of GO and KEGG analyses indicated that 

the differential gene functions in the high- and low-

risk groups were involved in a variety of signaling 

pathways. In biological processes (BP), they were 

mainly involved in immune-related processes, such  

as humoral immune response, complement activation 

and positive regulation of lymphocyte activation. In 

cellular components (CC), it is mainly enriched in 

processes such as external side of plasma membrane, 

blood microparticle, and circulating immunoglobulin 

complex. In terms of molecular function (MF), it 

mostly binds to a variety of substances (e.g., antigen, 

growth factor, immunoglobulin receptor, etc.) and 

regulates the activity of a variety of substances (e.g., 

organic acid transmembrane transporter, carboxylic 

acid transmembrane transporter, carboxylic acid 

transmembrane transporter, endopeptidase inhibitor, 

endopeptidase regulator, and monocarboxylic acid 

transmembrane transporter) and as structural com-

ponents of the extracellular matrix (Figure 5A).  

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment was shown to be involved in some classical 

pathways, such as complement and coagulation cascade, 

Primary immunodeficiency, peroxisome proliferators-

activated receptor (PPAP) signaling pathway, tumor 

necrosis factor (TNF) signaling pathway, and p53 

signaling pathway (Figure 5B). We further analyzed 

the signaling enrichment analysis of patients in the 

high-risk and low-risk groups. The high-risk group was 

enriched in cell cycle and mitosis related pathways 

(Figure 5C). While for the low-risk group was mainly 

enriched in substance metabolism related pathways, 

 

 
 

Figure 2. Differences in risk scores and differences in survival in subgroups with different clinical characteristics. (A) In 
subgroups with different clinical characteristics (T stage, N stage, M stage, tumour grade and tumour stage), the higher the malignancy of the 
disease, the higher the risk score. (B) The prognosis of patients in the high-risk group in the subgroups with different clinical features was 
significantly worse than that in the low-risk group, except for the N1 subgroup (***p < 0.001). 
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such as E3 ubiquitin ligase ubiquitination target 

proteins, proximal tubule bicarbonate recycling, 

valine, leucine, and isoleucine degradation, Golgi-

related vesicle biogenesis, and fatty acid metabolism 

(Figure 5D). 

 

Risk score analysis of LLPS-related genes associated 

with immunity and mutation 

 

Analysis of the immune infiltration landscapes of 

patients in the high-risk and low-risk groups by the 

CIBERSORT algorithm revealed that most of the 

immune cells (e.g., B cell naïve, B cell memory, B cell 

plasma, T cell CD4+ memory resting, Macrophage M0, 

Myeloid dendritic cell resting, Mast cell activated) 

infiltrated in higher abundance in the low-risk group, 

whereas some immune cells (e.g., T cell CD8+, T  

cell CD4+ memory activated, T cell follicular helper,  

T cell regulatory (Tregs), Macrophage M2, Myeloid 

dendritic cell activated) had a higher infiltration 

abundance in the high-risk group (Figure 6A). The 

correlation of these immune cells is also demonstrated 

in Figure 6B. Similarly in the single sample gene set 

enrichment analysis (ssGESA) algorithm CD8+_T cells, 

Macrophages, T helper cells, Tfh, Th1 cells, TIL cells 

had higher abundance in the high-risk group than in the 

low-risk group; NK cells, Mast cells, iDCs, DCs, aDCs 

the results were opposite (Figure 6C, 6D). In addition, 

the immune function of each sample was also scored, 

and it was not difficult to find that the scores were 

higher in the high-risk group in most of the immune 

functions, but the scores were higher in the low-risk 

group for antigen-presenting cell (APC) co-inhibition, 

Type II IFN Response (Figure 6E). In order to better 

verify the extent of immune response in different groups 

of patients, we analyzed the expression of immune 

checkpoints separately. Common immune checkpoints 

in kidney cancer (PD-1, CTLA4 and LAG3) were more 

 

 
 

Figure 3. Construction of a novel nomogram based on the TCGA-KIRC cohort. (A, B) Combining age and tumour stage, univariate 

and multivariate Cox regression analyses were performed to determine the risk score as an independent risk factor for ccRCC patients. (C) A 
nomogram combining age, tumour stage, and risk score was constructed; (D–F) Calibration charts at 1, 3, and 5 years were plotted to assess 
the accuracy of the nomogram; (G) ROC curves were used to further validate the ability of the nomogram to assess the patients’ prognosis at 
1, 3, and 5 years. 
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significantly expressed in the high-risk group  

(Figure 6F). 

 

The high-risk and low-risk groups differed in variant 

classification and the 10 genes with the highest 

mutation frequencies, while there were no differences in 

variant type and SNV class (Figure 7A–7D). 

 

Validation and single-cell analysis of key genes in 

prognostic prediction models for LLPS-related genes 

 

The new LLPS-associated gene risk model consists of 

five key genes (CLIC5, MXD3, NUF2, PABPC1L, 

PLK1). Therefore, we next performed qRT-PCR 

experiments to evaluate the mRNA expression of these 

genes in renal cancer cell lines and renal cancer tissues. 

The results of the TCGA-KIRC cohort showed that 

either in paired or unpaired renal cancer tissues, except 

for CLIC5, which was in a low expression state, the 

remaining four genes (MXD3, NUF2, PABPC1L, and 

PLK1) were in a high expression (Figure 8A, 8B). 

Normal renal tubular epithelial cells (Human Kidney-2, 

HK-2) were selected as a normal reference, and the 

findings in renal cancer cell lines (OSRC-2, Caki-1, 

786-O) were also consistent with the results of the 

TCGA-KIRC cohort. Similarly, CLIC5 expression was 

found to be lower than that of normal kidney tissues in 

renal clear cell carcinoma tissues extracted from our 

research center, while MXD3, NUF2, PABPC1L, and 

PLK1 were significantly higher in renal clear cell 

carcinoma tissues than in normal kidney tissues (Figure 

8C, 8D). 

 

In order to further explore the five key genes, we  

also performed single-cell analysis to investigate  

their expression distribution in different cells. Analysis 

of the GSE159115 database showed that five genes  

in malignant and stromal cells differed significantly 

 

 
 

Figure 4. E-MTAB-1980 cohort data validation of the constructed nomogram. (A, B) Univariate and multivariate Cox regression 

analyses were performed in the E-MTAB-1980 cohort to validate that the risk score could be used as an independent risk factor; (C) The same 
combination of age, tumour stage, and risk score was used to construct the nomogram in the E-MTAB-1980 cohort; (D–F) Calibration charts 
at 1, 3, and 5 years were used to further assess the accuracy of the nomogram. to further assess the accuracy of the nomogram; (G) ROC 
curves demonstrating the ability of this nomogram to assess patients’ prognosis at 1, 3, and 5 years. 
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between tumour and normal tissues, but only MXD3, 

NUF2 and PLK1 in immune cells (Figure 8E, 8F). The 

GSE139555 and GSE121636 databases demonstrated 

the expression of the genes in a variety of cells. In 

GSE139555, except for CLIC5, which was more highly 

expressed in plasma, the rest of the genes were more 

highly expressed in Tprolif (Figure 8G, 8H). While in 

GSE121636 the results showed that CLIC5 was higher 

in CD8 Tem cells, PABPC1L had a higher percentage 

of expression in pDC, and the rest of the genes 

remained higher in Tprolif (Figure 8I, 8J). 

DISCUSSION 
 

The mechanism of cancer development is full  

of complexity, and the discovery of LLPS has 

provided a new direction for its elucidation and 

treatment, which deserves more in-depth research. 

Various cellular activities involve “phase separation”, 

and therefore abnormal phase separation often leads  

to the development of many diseases. For example,  

in colorectal adenocarcinoma, SENP1 reduces the 

SUMOylation of RNF168 when DNA damage occurs, 

 

 

 

Figure 5. Exploration of potential function in high-risk and low-risk groups. (A) GO analysis explored the potential function in terms 

of BP, CC, and MF; (B) KEGG analysed the potential pathway enrichment; (C) GSEA analysed the potential pathway enrichment in the high-
risk group; (D) GSEA analysis demonstrated the potential pathway enrichment in the low-risk group. 
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Figure 6. Differences in immune function between high-risk and low-risk groups. (A) CIBERSORT algorithm analysing the landscape 

of immune infiltration in patients in the high-risk and low-risk groups; (B) Immune cell correlation analysis in the CIBERSORT algorithm;  
(C) Heatmap showing the ssGESA algorithm analysing the differences in immune cells and immune infiltration in the high-risk and low-risk 
groups (Cluster1 represents the high-risk group; Cluster2 represents the low-risk group); (D) Bar graph demonstrating the difference in 
immune cell infiltration in the high-risk and low-risk groups under the ssGESA algorithm; (E) Differences in immune function between high-
risk and low-risk groups by the ssGESA algorithm are demonstrated using bar graphs; (F) Bar graphs further demonstrating differences in the 
expression of immune checkpoints in the high-risk and low-risk groups. (*p < 0.05, **p < 0.01, ***p < 0.001, “ns”: not statistically significant). 
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facilitating its LLPS, enhancing non-homologous end 

joining (NHEJ) repair efficiency, and consequently 

strengthening cancer cell resistance to DNA-damaging 

agents [26]. CircASH2 enhances the LLPS of nuclear 

Y-box binding protein 1 (YBX1) in hepatocellular 

carcinoma, and also enhances the attenuation of the 

primary target protein tropomyosin 4 (TPM4) transcripts, 

thereby altering the tumor cytoskeleton structure  

to inhibit HCC metastasis [27]. By promoting the 

interaction between the IL-6 enhancer and promoter,  

the phase separation of the YY1 complex in M2 

macrophages triggers the upregulation of IL-6, further 

promoting the progression of PCa [28]. 

 

It has been shown that conventional TNM staging may 

be inaccurate in predicting the prognosis of ccRCC 

patients because it does not take into account the effect 

of gene expression on prognosis [29]. Many studies  

are currently trying to predict the prognosis of patients 

with ccRCC by establishing risk signatures based on  

the results of gene sequencing and combining them  

with clinical information [30–32]. But the overall 

efficiency of clinical translation is low. In this study, 

differential genes were selected based on differential 

expression from the many LLPS-related genes found. 

To prevent overfitting and select the genes with  

the most predictive value, LASSO Cox regression 

analysis screened five genes (CLIC5, MXD3, NUF2, 

PABPC1L, and PLK1) to construct a risk-prognostic 

prediction signature for LLPS-related genes in ccRCC. 

The signature distinguished significant differences in 

prognosis between the two groups of ccRCC patients  

in the TCGA-KIRC and E-MTAB-1980 cohorts, and 

had a more prominent ability to predict the prognosis 

and diagnosis of ccRCC patients. Notably, when the 

LLPS-related gene risk score was combined with  

age and tumour stage, the results of univariate and 

multivariate analyses indicated that the model was  

an independent prognostic factor for ccRCC. The risk 

signature with LLPS-related genes we constructed  

has a strong ability to judge the prognosis of ccRCC 

patients, which is a guide for clinicians’ diagnosis  

and treatment decisions. However, our study is still  

at the stage of public database analysis, which has  

certain limitations. If translated into practical clinical 

applications, more thorough evaluation and analysis in 

prospective, multicenter large data samples are needed. 

 

The tumour microenvironment plays a crucial role in 

cancer development, especially in tumours with a high 

 

 
 

Figure 7. Mutational landscapes in the high-risk and low-risk groups. (A) Overall display of the differences in mutation landscapes in 

the high-risk group; (B) Waterfall plot showing the top genes with the most mutations in the high-risk group and the corresponding mutation 
types; (C) Overall mutation landscapes in the low-risk group; (D) Waterfall plot displaying the mutation status of the top ten genes in the low-
risk group. 
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Figure 8. Expression validation of key genes in risk signatures of LLPS-related genes and single-cell analysis. (A) Unpaired 

expression analysis of the five key genes in the TCGA-KIRC cohort; (B) Paired expression analysis of the five key genes in the TCGA-KIRC 
cohort; (C) Expression of the five key genes in renal carcinoma cell lines (OSRC-2, Caki-1, and 786-O), with renal normal epithelial cells (HK-2) 
as a reference; (D) Key gene expression in ccRCC tissues and corresponding normal kidney tissues collected from our research centre;  
(E, F) GSE159115 cohort analysed the expression of five genes in immune cells, malignant cells and stromal cells; (G, H) GSE139555 analysed 
the expression of five genes in different cellular abundance; (I, J) GSE121636 further analysed the expression of five genes in different cells. 
(*p < 0.05, **p < 0.01, ***p < 0.001, “ns”: not statistically significant). 
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degree of immune infiltration ccRCC [33, 34]. The 

results of the immune infiltration analysis revealed a 

significantly higher infiltration abundance of Tregs and 

CD8+ T cells in the high-risk group than in the low-risk 

group. Tregs are lymphocytes that inhibit anti-tumour 

responses and the degree of infiltration of this cell was 

significantly correlated with poor prognosis [35, 36]. 

Several studies have shown that the finding of heavily 

infiltrating CD8+ T cells in ccRCC samples is strongly 

associated with poor prognosis [37–39]. The high 

expression of most of the genes analysed in single cells 

was positively correlated with Tprolif cells, which drive 

the expression of a number of markers associated with 

immune failure (e.g., HAVCR2, CTLA4, LAG3, TIGIT 

and PDCD1) [40]. We further explored the relationship 

between immune checkpoint expression and high- and 

low-risk groups. As shown in the results, the expression 

levels of immune checkpoints were differential in 

different groups, especially PD-1, CTLA4 and LAG3, 

which are commonly found in renal cancer, were  

more significantly expressed in the high-risk group.  

Up-regulation of PD-1 and CTLA4 inhibits T-cell 

activation and proliferation, allowing tumours to evade 

immune recognition and elimination [41, 42]. LAG3 

binds to MHC class II HLAs with high affinity, thereby 

promoting pro-inflammatory cytokine production and 

negatively regulating T cell responses [43]. This set of 

results could explain to some extent the higher immune 

cell infiltration as well as the higher expression of 

immune checkpoints accompanied by a poor prognosis 

in the portion of ccRCC patients in the high-risk group 

of LLPS-related gene risk scores. 

 

The new LLPS-associated gene risk model is composed 

of CLIC5, MXD3, NUF2, PABPC1L, and PLK1, which 

have also been found to play a role in ccRCC in existing 

studies. Resistance to FOLFIRNOX in pancreatic ductal 

adenocarcinoma may result from MIR1307-induced 

reduction in CLIC5 expression [44]. Previous studies 

have shown the association of MXD3 expression levels 

and genetic or epigenetic alterations with tumour stage, 

metastasis, TME, immune escape and drug sensitivity in 

39 TCGA cancer types and subtypes, including ccRCC 

[45]. Overexpression of NUF2 is associated with a poor 

prognosis in ccRCC and can act as a potential oncogene 

to promote proliferation, migration, and invasion of 

ccRCC cells by affecting the recruitment of KDM2A to 

modulate the H3K36me2 modification in the promoter 

region, which can activate the transcription of HMGA2 

through epigenetics [46]. PABPC2L is highly expressed 

in colorectal cancer and significantly correlates with  

its clinical stage and prognosis [47]. PLK1 is highly 

expressed in ccRCC, is dependent on hypoxia/HIF-2 
mediation, and is associated with poor prognosis and 

resistance to tyrosine kinase inhibitors of the VEGF 

receptor [48]. This provides a strong reference to further 

explore the role of these genes in regulating LLPS in 

ccRCC. 

 

This study is the first to construct a prognostic risk 

model for ccRCC patients from the perspective of 

LLPS, and further analysed the potential function, 

immune infiltration and mutation, which can provide 

some help for clinicians’ therapeutic decision-making. 

However, our study still has some limitations. First, 

this study was based on a public database, which  

is a retrospective analysis with some limitations  

in the conclusions, and prospective studies are needed 

to validate these conclusions. Moreover, the public 

database itself has some limitations; we used only  

one cohort for validation, and the results obtained  

need to be validated with further clinical cohort  

data. Second, although risk signatures with LLPS-

related genes performed well in predicting ccRCC 

survival, this study did not consider potential external 

factors, such as other important genes with predictive 

value, environmental factors, and lifestyle, which 

could have influenced the conclusions reached in  

this study. Finally, we only performed qRT-PCR 

experiments to validate the expression of key genes, 

lacking further biological evidence such as molecular 

function experiments. 

 

CONCLUSIONS 
 

In conclusion, this study establishes a new risk model 

and column-line diagram for ccRCC patients from an 

LLPS perspective and can be used as a predictor of 

survival and prognosis for ccRCC patients and is 

expected to provide new solutions for clinical decision-

making regarding immunotherapy and targeted therapy 

for ccRCC patients. 
 

MATERIALS AND METHODS 
 

Data source  
 

RNA expression data of ccRCC patients and related 

clinical data were obtained from the TCGA-KIRC cohort 

on the TCGA website (https://portal.gdc.cancer.gov/), 

which contains 541 tumor samples and 72 normal 

samples. LLPS-related genes were obtained from the 

DrLLPS website (http://llps.biocuckoo.cn/index.php), 

which covers 887,164 known and computationally 

detected LLPS-associated proteins from 437 eukaryotic 

species [49]. We screened 3611 LLPS-related genes from 

the species “Homo sapiens” for subsequent analysis. RNA 

expression data and clinical data of 101 ccRCC patients 

from the E-MTAB-1980 cohort of the ArrayExpress 
database (https://www.ebi.ac.uk/biostudies/arrayexpress) 

were used as a validation cohort to test the validity of the 

signature. 
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Screening for differentially expressed genes in 

ccRCC 

 

The expression profiles of LLPS-related genes in the 

TCGA-KIRC cohort were extracted, and differentially 

expressed genes were screened using the “limma” 

package in R [50]. Filtering criteria required a p-value 

of <0.05 and |log2FC|> 1. 

 

Constructing and validating a prognostic signature 

for LLPS-related genes in ccRCC 

 

Based on the results of differential expression  

analysis of LLPS-related genes in ccRCC, we used 

univariate Cox regression analysis to screen for 

prognostic genes by combining RNA expression data 

and clinical survival data. After that, the LASSO Cox 

regression analysis was performed using the “glmnet” 

package. Risk prediction signature was constructed  

by combining the screened genes and the calculated 

Coef’s coefficients. 

 

1 1 2

2

*

*

*

RNA RNA RNA

RNA RNAn

RNAn

Risk Score Exp Coef Exp

Coef Exp

Coef

= +

+ +  

 

In the formula, “ExpRNAn” represented the expression 

value of a gene, and “CoefRNAn” represented the 

coefficient of the gene. 

 

We performed a Kaplan-Meier curve analysis  

on the TCGA-KIRC and E-MATB-1980 cohorts,  

followed by a log-rank test to identify differences  

in OS between the two different cohorts. To assess  

the predictive power of the characteristics, we used 

ROC analysis. We meticulously organized pertinent  

clinical data and associated expression data pertaining 

to the high-risk and low-risk cohorts. Subsequently, 

we delved into the impact of other pertinent  

clinical variables on the prognostic efficacy of these 

risk-defined groups. Furthermore, we investigated  

the interrelationship between the risk scores and 

clinically relevant factors within the prognostic risk 

signature. 

 

Developing and verifying nomogram and calibration 

chart 

 

Based on the univariate and multivariate Cox regression 

analyses, nomogram was constructed using the “rms” 

package, which included age, tumor stage, and risk 

group, and had predicted the 1-, 3-, and 5-year survival 
rates of patients with ccRCC. Calibration charts and 

ROC curves were further plotted to assess the reliability 

and accuracy of the plots. 

GO, KEGG and GESA analysis 

 

The “limma” and “ClusterProfiler” packages calculated 

the differentially expressed genes in the high-risk and 

low-risk groups of the TCGA-KIRC cohort for GO  

and KEGG analysis in terms of BP, CC, and MF, 

respectively. For further revealing the biological 

functions of LLPS-related genes, we performed GSEA, 

and the annotation file “c2.all.v2023.1.Hs.symbols.gmt” 

was obtained from MsigD.  

 

Immune infiltration analysis and mutational 

landscape 

 

The immune cell and immune-related pathway 

infiltration levels were calculated by the ssGESA 

algorithm and the “GSVA” and “GSEABase” packages 

aiming to assess the immune-related functions of 

patients with different LLPS-related gene risk scores. 

Secondly, the CIBERSORT algorithm was used to 

calculate the proportion of immune cell types infiltrated. 

 

Single-cell analysis of key genes for risk signature 

 

Tumor Immune Single-cell Hub 2 (TISCH2, 

http://tisch.comp-genomics.org/home/) provides an 

online database for detailed single-cell analysis. We 

selected three data (GSE159115, GSE139555, and 

GSE121636) to analyze the distribution of five key 

genes (CLIC5, MXD3, NUF2, PABPC1L, and PLK1) 

in different cell types of ccRCC. 

 

ccRCC cell lines and tissues validate RNA 

expression of key genes 

 

All cells were purchased from the Chinese Academy 

of Sciences (Shanghai, China). Cells were cultured  

in high-glucose DMEM (Solarbio, Beijing Solarbio 

Science and Technology Co., Ltd., Beijing, China), 

MEM (Boster, China) and 1,640 (Gibco, Carlsbad, 

CA, USA) medium containing 10% FBS (VivaCell 

Biosciences Co., Ltd., Shanghai, China) and 1% 

streptomycinpenicillin, and maintained at 37° C and 

5% CO2. 

 

Total RNA was extracted from three renal cancer cell 

lines (OSRC-2, Caki-1, 786-O) and HK-2, as well as from 

eight pairs of human renal cancer tissues and adjacent 

normal renal tissues using the TRIzol reagent (Cwbio, 

Jiangsu, China). Reverse transcription to cDNA was done 

under the instructions of the Reverse Transcription Kit 

(TransGen Biotech, China, Beijing). Finally, qPCR was 

performed using SYBR Real-Time PCR Kit (TransGen 
Biotech, China, Beijing). β-actin was used as an internal 

reference, and primer sequences for the remaining 

molecules are shown in Supplementary Table 1. 
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Statistical analysis 

 

Statistical analysis for this study was performed using R 

software (version 4.3.1) and GraphPad Prism (version 

9.0). For comparison of differences between binary and 

continuous variables we used the student’s t-test. p < 

0.05 was considered statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Primer sequences for related genes. 

 Forward sequence (5’-3’) Reverse sequence (5'-3’) 

NUF2 TGGAGACTCAGTTGACTGCCTG ATTTGGTCCTCCAAGTTCAGGCT 

PLK1 TACGGCAAATTGTGCTTGGC CCCACACAGGGTCTTCTTCC 

MXD3 GAGCATGGTTATGCGTCCCTGT CCTGCGCTTCTCCAGTTCATTG 

PABPC1L CGTCATCAATGGAGTCGTCCAG AGCGGCAGAATGAACTGAAGCG 

CLIC5 TCTGTTGCCCAAGCTCCATGTG GCATAGGCGTTCTTGAGGTACC 

 β-actin TCTCCCAAGTCCACACAGG GGCACGAAGGCTCATCA 

 

Supplementary Table 2. All LLPS-related genes associated with overall survival. 
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