
www.aging-us.com 10861 AGING 

 

INTRODUCTION 
 
Cells can utilize multiple metabolic pathways for  
energy production and biosynthesis depending on the  

 

requirements for cellular function and the availability  
of metabolites [1]. A major hurdle in neoplastic 
transformation is the ability of cells to meet the high 
bioenergetic and biosynthetic needs necessary to sustain 
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ABSTRACT 
 
Metabolic changes are the markers of cancer and have attracted wide attention in recent years. One of the 
main metabolic features of tumor cells is the high level of glycolysis, even if there is oxygen. The 
transformation and preference of metabolic pathways is usually regulated by specific gene expression. The 
aim of this study is to develop a glycolysis-related risk signature as a biomarker via four common cancer types. 
Only hepatocellular carcinoma was shown the strong relationship with glycolysis. The mRNA sequencing and 
chip data of hepatocellular carcinoma, breast invasive carcinoma, renal clear cell carcinoma, colorectal 
adenocarcinoma were included in the study. Gene set enrichment analysis was performed, profiling three 
glycolysis-related gene sets, it revealed genes associated with the biological process. Univariate and 
multivariate Cox proportional regression models were used to screen out prognostic-related gene signature. 
We identified six mRNAs (DPYSL4, HOMER1, ABCB6, CENPA, CDK1, STMN1) significantly associated with 
overall survival in the Cox proportional regression model for hepatocellular carcinoma. Based on this gene 
signature, we were able to divide patients into high-risk and low-risk subgroups. Multivariate Cox regression 
analysis showed that prognostic power of this six gene signature is independent of clinical variables. Further, 
we validated this data in our own 55 paired hepatocellular carcinoma and adjacent tissues. The results 
showed that these proteins were highly expressed in hepatocellular carcinoma tissues compared with 
adjacent tissue. The survival time of high-risk group was significantly shorter than that of low-risk group, 
indicating that high-risk group had poor prognosis. We calculated the correlation coefficients between six 
proteins and found that these six proteins were independent of each other. In conclusions, we developed a 
glycolysis-related gene signature that could predict survival in hepatocellular carcinoma patients. Our findings 
provide novel insight to the mechanisms of glycolysis and it is useful for identifying patients with 
hepatocellular carcinoma with poor prognoses. 
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cancer cell growth. It is well established that cancer cells 
shift to a pro-anabolic metabolism induced by oncogenes, 
such as c-Myc [2]. Most notable is the Warburg effect 
wherein cancer cells increase glycolysis and it is a 
metabolic hallmark of virtually all cancer cells, 
characterized by excessive conversion of glucose to 
lactate. It occurs in most organisms, even though in the 
presence of oxygen. An increase in glycolysis provides 
cancer cells with energy and heightened potential for 
biomass production from glycolytic intermediates [3]. 
Glycolysis was an early attractive target for cancer 
therapy given the clinical observation that many tumors 
exhibit a significant increase in glucose uptake compared 
with adjacent normal tissue [4]. LDH-A, a will pyruvate 
(end product of glycolysis) converted to lactic acid 
metabolic enzymes, is identified as the first metabolic 
target of the oncogene MYC [5]. Another potential 
therapeutic target is the glycolytic protein HK2. Many 
tumor cells overexpress HK2, and preclinical mouse 
models of genetically engineered NSCLC (non-small cell 
lung cancer) and breast cancer demonstrate that HK2 
inhibition delays tumor progression [6]. Uncontrolled 
growth, reduced ability to undergo apoptosis and the 
ability to metastasize are some of the important features 
of malignancies, regardless of origins of tissues [7]. 
Therefore, early detection of cancer is always one of the 
most effective ways to improve the overall survival rate 
of cancer patients. Clinically, better or alternative 
methods to identify cancer risk groups are always needed 
[8]. Thousands of biomarkers that may be associated with 
survival and prognosis have been explored through 
various methods. However, we found that limited studies 
have systematically investigated the metabolic status and 
its prognostic value in patients with tumor. And most 
biomarkers have been developed in a wide range, not 
selected for specific features or single signaling 
pathways, which could be a new entry point for us to 
research. Therefore, clarifying the relationship between 
glycolysis and tumor is crucial for understanding the 
mechanism of tumorigenesis. 
 
In the present study, we performed GSEA to identify 
glucose-related gene sets that could distinguish the 
clinical and molecular variables of several common 
cancers which were mentioned above, including colon 
adenocarcinoma (COAD), kidney renal clear cell 
carcinoma (KIRC), hepatocellular carcinoma (HCC) and 
breast invasive carcinoma (BRCA). And then, we found 
the significant mRNAs could be mined only in HCC. We 
developed a glucose-related prognostic signature with the 
whole genome expression data from the TCGA database 
for the patients with HCC in the TCGA dataset. 
Surprisingly, the local glycolysis-related risk signature 
could independently classify patients with HCC with a 
high risk of unfavorable outcome. We first identified a 
glycolysis-related risk signature for patients with HCC. 

These results might provide a new view for the research 
of HCC and individual treatment. 
 
RESULTS 
 
Glycolysis-related gene sets differ significantly 
between adjacent cancer samples and tumor samples 
 
The study included four solid tumors, including COAD, 
KIRC, HCC and BRCA. The mRNA expression and 
clinical data of all patients were obtained from the 
Cancer Genome Atlas Database (TCGA). We found all 
glycolysis-related gene sets on the Molecular Signatures 
Database v4.0 (http://www.broadinstitute.org/gsea/ 
msigdb/index.jsp), namely three different gene sets 
(HALLMARK_GLYCOLYSIS, KEGG_GLYCOLYSIS_ 
GLUCONEOGENESIS, REACTOME_GLYCOLYSIS). 
First, we used GSEA to explore whether these three 
glycolysis-related gene sets differ significantly between 
adjacent cancer samples and tumor samples (Figure 1). 
We found that the HALLMARK_GLYCOLYSIS gene 
set in HCC was significantly different between 
paracancerous and tumor samples (FDR=0.0221); the 
REACTOME_GLYCOLYSIS gene set in COAD was 
significantly different between paracancerous and  
tumor samples (FDR=0.0266). The HALLMARK_ 
GLYCOLYSIS gene set in BRCA was significantly 
different between the paracancerous sample and the 
tumor sample (FDR = 0.0152). In the analysis of renal 
clear cell carcinoma, the FDR values of three gene sets 
were all found to be greater than 0.05 (Figure 2), 
indicating that there is no significant difference between 
the adjacent glycolysis-related gene sets in the 
paracancerous samples and the tumor samples. Next, the 
core genes (CORE ENRICHMENT: YES) under the 
above gene set is screened, that is, the gene whose 
expression is up-regulated in the tumor tissue. Among 
the four solid tumors, differentially expressed genes can 
be screened for COAD, HCC and BRCA. Compared 
with adjacent tissues, 75 up-regulated mRNAs were 
screened in COAD tissues; 109 up-regulated mRNAs 
were screened in HCC tissues compared with adjacent 
tissues; compared with adjacent tissues, a total of 101 
up-regulated mRNAs were screened in BRCA tissues 
(Table 1). 
 
To verify whether the core gene is involved in glycolysis, 
we conducted an in-depth study using GO analysis and 
KEGG pathway enrichment analysis. The results showed 
that the most enriched biological process term (BP) was 
related to glucose metabolism process, molecular 
function term (MF) was related to sugar binding and 
glucose binding, and KEGG pathway enrichment 
analysis involved glycolysis/gluconeogenesis, suggesting 
that the selected core genes are indeed related to 
glycolysis (Figure 3). 

http://www.broadinstitute.org/gsea/msigdb/index.jsp
http://www.broadinstitute.org/gsea/msigdb/index.jsp
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Identification of glycolysis-related genes associated 
with patients’ survival 
 
We selected the core genes from the GSEA results table 
and performed a univariate Cox regression analysis to 
further screen for the mRNAs associated with the 
patient's OS. It was found that 22 mRNAs were selected 
for HCC in patients with OS (P<0.001); in the analysis 
of COAD, no mRNA associated with OS was found; in 
the analysis of BRCA, four mRNAs were associated 
with OS (P < 0.1, Table 2), but the area under the curve 
(AUC = 0.637) of the receiver operating characteristic 
curve (ROC), indicating diagnostic performance was 
less than 0.70 (Figure 4). The efficacy is not high, 
therefore, no prognostic genes related to glycolysis can 
be screened in breast invasive cancer. The univariate 
Cox proportional regression model found that the 
differentially expressed genes related to glycolysis 
which were associated with the patient's OS could only 
been selected in HCC of the remaining three tumors. 
 
Multivariate Cox regression analysis further examined 
the relationship between glycolysis gene expression 
profiles and OS in patients with HCC. Six mRNAs 
(DPYSL4, HOMER1, ABCB6, CENPA, CDK1, 
STMN1) were screened as independent prognostic 
indicators (Table 3). As gene signature, they could be 
classified into dangerous (DPYSL4, HOMER1, ABCB6, 

CENPA, STMN1, HR> 1) and protected type (CDK1, 
HR<1). 
 
Next, we analyzed the mutations of the selected six 
mRNAs in HCC through clinical HCC samples in the 
cBioPortal online web database. The results showed that 
19 of 309 patients (6%) had mutations. Among them, 
DPYSL4: one case of gene amplification, one case of 
missense mutation, one case of truncation mutation; 0.9% 
of HOMER1 gene mutation, two cases of amplification, 
one case of missense mutation, one case of truncation 
mutation; 0.7% of ABCB6 gene mutation; CENPA gene 
has 2% mutation; CDK1 gene mutation is 0.7%; STMN1 
gene mutation accounts for 1.4% (Figure 5A). 
 
We further analyzed the differential expression of 
DPYSL4, HOMER1, ABCB6, CENPA, CDK1, STMN1 
in cancer and adjacent tissues, and found that compared 
with adjacent tissues, the six genes in 309 HCC tissues 
were significantly up-regulated (P<0.01, Figure 5B). 
 
Construction and validation of a six-mRNA 
signature for predicting patients’ outcome 
 
To construct a prognostic signature, these six mRNAs 
were analyzed using a multivariate Cox regression 
analysis in the entire dataset with survival. Next, by 
integrating the expression profiles of six mRNAs and the 

 

 
 

Figure 1. Flow chart of finding six mRNAs signature in HCC. 
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Figure 2. Enrichment plots of three glycolysis-related gene sets in each tumor (FDR is the P value after correction by multiple 
hypothesis test). (A) HCC, (B) Colorectal adenocarcinoma, (C) Breast invasive carcinoma, (D) Renal clear cell carcinoma. 
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Table 1. Core genes of three cancers. 

Cancer Gene CORE 
ENRICHMENT 

HCC 

SLC25A10, CHST6, STC2, EGLN3, MET, GLCE, PRPS1, HK2, PPFIA4, PAM, MIOX, DPYSL4, 
PHKA2, HDLBP, GALK1, B3GNT3, VCAN, DDIT4, ZNF292, COL5A1, TGFBI, NDUFV3, 
HOMER1, GALK2, EXT2, CHST1, VEGFA, SLC16A3, HS2ST1, GFPT1, ME2, B4GALT4, 

GAL3ST1, STC1, MDH1, SDC2, ME1, BIK, TPI1, MPI, GALE, SOX9, AGRN, ARTN, PGK1, 
COPB2, CHST12, SDHC, ARPP19, G6PD, ENO1, RPE, SRD5A3, ABCB6, PLOD1, FKBP4, 

NSDHL, GYS1, KDELR3, NANP, MDH2, SPAG4, PGLS, MIF, TALDO1, B4GALT2, KIF2A, 
ALDOA, TSTA3, SAP30, TXN, CHPF2, NASP, B3GALT6, RRAGD, PYGB, HSPA5, GNPDA1, 
NOL3, ECD, DEPDC1, EFNA3, PAXIP1, POLR3K, RARS, BPNT1, CENPA, GPC3, B3GAT3, 
GMPPB, ALG1, KIF20A, CDK1, RBCK1, GMPPA, STMN1, HAX1, MED24, HMMR, XYLT2, 

AURKA, IDUA, CLN6, PSMC4, PPIA, ANKZF1, COG2, B4GALT7, P4HA2 

YES 

COAD 

PPP2CB, PFKL, PFKFB2, PGAM1P5, PPP2R5D, PPP2R1A, PPP2CA, ALDOA, ADH1B, 
ADH1C, PGM1, ACSS2, PCK1, ADH5, GALM, ADH1A, GCK, ADH6, ALDH3A2, HK2, 
ALDH9A1, ALDH2, DLD, PDHB, PCK2, HK1, DLAT, CITED2, UGP2, CAPN5, MXI1, 

FAM162A, DSC2, DCN, MPI, GOT1, ME2, BPNT1, SLC35A3, PC, AK3, EXT1, MDH1, TGFA, 
PKP2, AGL, LHPP, VLDLR, B4GALT1, GNE, EGFR, B4GALT4, ISG20, PLOD2, GMPPB, 

SDHC, CHST2, ADORA2B, EGLN3, CYB5A, IL13RA1, CASP6, GYS1, COG2, CACNA1H, 
ANG, IDH1, NDUFV3, B3GNT3, PGAM1, CLDN3, CSDC2, ELF3, CTH, GAL3ST1 

YES 

BRCA 

P4HA2, CACNA1H, ARTN, PGK1, AURKA, BIK, CHPF, FAM162A, SDC1, TSTA3, 
CXCR4, FUT8, ELF3, GOT2, NASP, P4HA1, GALE, SRD5A3, EFNA3, PLOD1, PGLS, 

SLC16A3, GFPT1, CLDN3, PDK3, SLC25A13, PMM2, TFF3, PRPS1, GALK1, B4GALT7, 
SLC37A4, SLC25A10, VEGFA, TPI1, MED24, FKBP4, SPAG4, HAX1, SDHC, PSMC4, 

GMPPB, LDHA, XYLT2, SLC35A3, CDK1, MDH2, HSPA5, TPBG, SOD1, PGM2, ALG1, 
B3GAT3, MIF, CHST6, PPIA, ALDOA, B4GALT4, CASP6, GPC1, AGRN, TXN, PAXIP1, 
IDUA, B3GALT6, CLN6, GNPDA1, VCAN, ISG20, MIOX, B4GALT2, HDLBP, DEPDC1, 

RPE, KDELR3, COG2, HMMR, PGAM1, STMN1, KIF20A, EGLN3, RBCK1, ENO2, 
COL5A1, POLR3K, GPC4, B4GALT1, PFKP, SAP30, RARS, GMPPA, ME2, QSOX1, 

NSDHL, TALDO1, CENPA, COPB2, BPNT1, IER3, AKR1A1, CHPF2 

YES 

 

 
 

Figure 3. GO and KEGG pathway enrichment analysis of glycolysis-related genes selected from GSEA. 
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Table 2. The result of univariate Cox analysis in BRCA. 

mRNA HR z p value 
P4HA2 1.455667226 2.329155281 0.019850841 
CACNA1H 1.122726446 2.207138132 0.02730441 
ARTN 1.162671204 2.179141916 0.029321127 
PGK1 1.361430124 2.074462111 0.038036414 
 

corresponding regression coefficients obtained from the 
above multivariate Cox regression analysis, a prognostic 
feature was constructed, as shown below: Risk score = 
(0.1142 × expression level of DPYSL4) + (0.1982 × 
expression level of HOMER1) + (0.2647 × expression 
level of ABCB6) + (0.4603 × expression level of 
CENPA) + (-0.5359 × expression level of CDK1) + 
(0.3966 × expression level of STMN1). Using six mRNA 
signatures, we calculated the risk scores for each patient 
in the entire data set and ranked them in order of 
increasing risk scores (Figure 6A). Thus, 309 patients in 
the entire data set were classified as high risk groups (n = 
154) and low-risk groups (n = 155), using the median risk 
score as the threshold. The Kaplan-Meier (KM) analysis 
showed a significant difference in the outcome of the 
patients between the high-risk group and the low-risk 
group (log-rank test P <0.001; Figure 6C). The high-risk 
subgroup had significantly worse survival than those in 
the low risk subgroup. To evaluate how well the six-
mRNA signature for diagnosis, the ROC curve analysis 
was carried out. The AUC for the six-mRNA signature  
 

 
 

Figure 4. ROC curve of glycolysis-related genes in BRCA. 

was 0.765 (Figure 6D), demonstrating the good 
diagnostic significance of six-mRNA signature for 
survival prediction in the entire dataset. Figure 6B 
showed the risk score, OS (in days) and life status of 309 
patients in the entire data set, ranked in order of increased 
risk score, the patients with high-risk scores had higher 
mortality rates than did the patients with low-risk scores. 
 
We applied chi-square test to reveal the relation between 
risk score and clinical features (Table 4). It revealed that 
T, N, M, stage, grade, relative family history concerned 
the risk score of HCC patients. 
 
We next validated our six-mRNA signature in the training 
set and validation set to confirm our findings. 309 patients 
were randomly divided into a training set (n = 151) and a 
validation set (n = 158). The ID of the two groups please 
see the Supplementary Table 1. Cross validation showed 
that the CLF score was 0.82, indicating that the grouping 
was stable and reliable. Consistent with the results of the 
entire set, patients in the high-risk group had significantly 
shorter survival time than those in the low-risk group of 
the training set (log-rank test P =0.0263; Figure 7A). The 
validation data set, similar results were observed: the 
survival rate of patients in the high-risk group was 
significantly lower than that in the low-risk group (log-
rank test P =0.0169; Figure 7B). 
 
In order to confirm that the gene signature is more 
significant than the single gene biomarker, we verified it 
with the KM analysis and the ROC curve and the results 
showed that our hypothesis is correct. When the six 
genes act as a single biomarker respectively, their 
diagnostic significance was not better than the six-
mRNA signature (Figure 8). 
 
Independence of the risk score for the six-mRNA 
from other clinical variables 
 
To assess whether the prognostic ability of the six mRNA 
markers is independent of other clinical parameters 
including family history, new tumor event after initial 
treatment, neoplasm cancer status and tumor stage, the 
univariate and multivariate Cox regression analyses were 
performed in the entire dataset. The results of the data 
showed that the risk score of six mRNA is significantly 
related to patients’ survival. Surprisingly, the six-mRNA 
signature still retained an independent prognostic 
indicator after adjustment for other clinical parameters in 
the entire dataset (P-value<0.001, HR = 1.884, 95% CI = 
1.287-2.757; Table 5 and Table 6). In addition, we found 
that T, neoplasm cancer status, new tumor event after 
initial treatment were also independent prognostic 
factors, because they had significant differences not only 
in the univariate analysis, but also in the multivariate 
analysis, with P values less than 0.05. 
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Table 3. Details of the six selected mRNAs. 

mRNA Ensemble ID Chromosome location β(Cox) HR p 
DPYSL4 ENSG0000015164 Chr10:132184983..132205776 0.1142 1.1210 0.000816 
HOMER1 ENSG00000152413 Chr5:79,372,636-79,514,217 0.1982 1.2192 0.000349 
ABCB6 ENSG00000115657 Chr2:219,209,766-219,219,017 0.2647 1.3030 0.000461 
CENPA ENSG00000115163 Chr2:26,764,289-26,801,067 0.4603 1.5846 8.66E-06 
CDK1 ENSG00000170312 Chr10:60,778,331-60,794,852 -0.5359 0.5852 6.04E-05 
STMN1 ENSG00000117632 Chr1:25,884,181-25,906,991 0.3966 1.4867 1.56E-06 

 

 
 

Figure 5. Identification of prognostic risk signature associated with glycolysis. (A) Mutations of selected genes in patients with 
hepatocellular carcinoma, (B) Differential expression analysis of 6 selected genes. (*p<0.05, ***p<0.001, ****p<0.0001). 
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Stratified analyses were then performed according to 
person neoplasm cancer status, new tumor event after 
initial treatment, grade, respectively. First, all 309 HCC 
patients were stratified by person neoplasm cancer status 
into tumor free dataset (n = 135) and with tumor (n = 
100) dataset. The six-mRNA signature could classify the 
tumor free dataset into a high-risk group (n = 84) and a 
low-risk group (n = 51) with significantly different 
survival. Similarly, the six-mRNA signature was also 
able to classify the with tumor dataset into a high-risk 
group (n = 51) and a low-risk group (n = 49) with 
significantly different survival (Figure 9A). Then all 
patients were further stratified by grade into an early 
dataset (grade I and grade II, n=182) and a late dataset 
(grade III and grade IV, n = 123). Similar prognostic 
power of the six-mRNA signature was significant in both 
the early dataset and late dataset. Patients in the early 
dataset were classified into a high-risk group (n = 91) 
with shorter survival and a low-risk group (n = 91) with 

longer survival. Similar results were observed in the late 
dataset (Figure 9C). Finally, all patients were stratified by 
the new tumor event after initial treatment into no dataset 
(n = 123) and yes dataset (n = 122). There was a 
significant difference in survival rate between high-risk 
group and low-risk group (Figure 9B). It is shown from 
that regression analysis of single variable and 
multivariable Cox and the result of stratified analysis that 
the prediction ability of six mRNA mark is independent 
from other clinical parameter and can predict the survival 
rate of HCC patients. 
 
Exploration of the differentially expressed genes 
between high-risk and low-risk patients related to 
the gene signature 
 
To investigate the differentially expressed genes 
between high-risk and low-risk patients related to the 
gene signature, KEGG analysis was carried out on the 

 

 
 

Figure 6. Glycolysis-related gene signature predicts OS in patients with HCC. (A) Distribution of risk scores per patient,  
(B) Relationship between survival days and survival status of each patients, (C) K-M curve to verify the predictive effect of gene signature,  
(D) ROC curve analysis to evaluate the diagnostic efficacy of gene signature. 
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Table 4. The chi-square test of the relation between risk score and clinical features. 

Clinical feature 
Risk score 

X2 p 
High risk n(%) Low risk n(%) 

Gender   0.057 0.811 
Male 92(44.4%) 115(55.6%)   
Female 43(43.0%) 57(57.0%)   

Age   0.318 0.573 
≥61 72(48.6%) 86(54.4%)   
<61 64(42.4%) 87(57.6%))   

T   26.629 < 0.001 
T1 46(30.5%) 105(69.5%)   
T2 36(48.0%) 39(52.0%)   
T3 43(63.2%) 25(38.6%)   
T4 9(75.0%) 3(25.0%)   

N   6.203 0.013 
N0 84(38.5%) 134(61.5%)   
N1 4(100%) 0(0.0%)   

M   5.623 0.018 
M0 93(41.0%) 134(59.0%)   
M1 4(100%) 0(0.0%)   

Stage   39.396 <0.001 
I 39(27.3%) 104(72.7%)   
II 31(44.9%) 38(55.1%)   
III 50(67.6%) 24(32.4%)   
IV 5(100%) 0(0.0%)   

Grade   14.656 0.002 
I 25(56.8%) 19(43.2%)   
II 66(47.8%) 72(52.2%)   
III 44(40.0%) 66(60.0%)   
IV 0(0.0%) 13(100%)   

Person neoplasm cancer status   2.96 0.085 
Tumor free 51(37.8%) 84(62.2%)   
With tumor 49(49.0%) 51(51.0%)   

New tumor event after initial treatment   1.18 0.179 
No 48(39%) 75(61%)   
Yes 58(47.5%) 64(52.5%)   

Relative family history   5.868 0.015 
No 65(35.9%) 116(64.1%)   
Yes 48(51.15) 46(48.9%)   

Adjacent hepatic tissue inflammation extent type   3.619 0.164 
None 47(52.2%) 43(47.8%)   
Mild 34(39.1%) 53(60.9%)   
Severe 3(33.3%) 6(66.7%)   

Abbreviations: T: Tumor; N: Node (regional lymph node); M: Metastasis 
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risk score associated genes. By differential expression 
analysis, we extracted the differential expression data of 
183 low-risk patients and 184 high-risk patients, and 
ordered them by P value. We selected the most 200 
significant differentially expressed genes for subsequent 
analysis. 
 
We found that these genes were enriched in terms 
including “cell cycle”, “protein digestion and 
absorption”, and“central carbon metabolism in cancer” 
(Supplementary Figure 1A). Meanwhile, using these 
genes with mRNA-signature, we performed PPI 
(protein-protein interaction) to find the hub gene through 
String (https://string-db.org/cgi/input.pl?sessionId= 
FB2xhX96kIxn&input_page_show_search=on) and 
cytoscape software. The result indicated that several 
genes for example, “CCNB1, CDK1, PLK1” 
(Supplementary Figure 1B) were the key genes we 
hoped to select, and “CENPA, STMN1, KIF2C, 
PTTG1” also played a crucial role in above pathways. 
Surprisingly, three genes of them that we identified 
before. It illustrated that “CENPA, STMN1, CDK1” are 
not only hub genes which have strong relationship with 
differentially expressed genes between high-risk and 
low-risk patients, but also the factors that influence the 
outcome of patients with HCC. All these results suggest 
that the novel gene signature reflects the HCC cellular 
functional characteristics related to the poor prognosis, 
thus predicts the survival of HCC patients. 
 
The protein of the six-genes were overexpressed in 
HCC tissues 
 
To further verify the protein expression level of the six-
genes in HCC, immunohistochemistry was performed in 
TMA containing 55 paired HCC and adjacent tissue. 

Consistent with our previous findings, the six proteins 
were highly expressed in most HCC tissues compared 
with that in adjacent non-tumor liver tissues (Figure 10). 
As shown in Figure 10, high expression of STMN1 
(29/55), ABCB6 (42/55), HOMER1 (24/55), CENPA 
(30/55), CDK1 (40/55) and DPYSL4 (41/55) were 
detected in a majority of HCC tissues, while high 
expression of STMN1 (8/55), ABCB6 (18/55), 
HOMER1 (11/55), CENPA (13/55), CDK1 (19/55) and 
DPYSL4 (17/55) were observed in a minority of 
adjacent non-tumor liver tissues. The potential 
association between protein expression and clinical 
features of HCC was analyzed. We found that high-
expressed (STMN1, HOMER1, CENPA) patients had 
significant low overall survival rate compared with low-
expressed group patients (Figure 11). These data indicate 
the survival time of high-risk group was significantly 
shorter than that of low-risk group, indicating that high-
risk group had poor prognosis. We analyzed the 
correlation of the six proteins in HCC. The results 
showed that the absolute value of R values was less than 
0.3, suggesting that these six proteins are independent of 
each other (Figure 12). 
 
DISCUSSION 
 
In recent years, research on energy metabolism has been 
aroused people’s attention, furthermore, human 
malignancy and energy metabolism are inextricably 
linked. The metabolism of malignant tumors is 
characterized by the Warburg effect, in which a 
metabolic shift from oxidative phosphorylation in the 
mitochondria towards glycolysis occurs in tumor  
cells [9]. Although aerobic glycolysis is less efficient for 
ATP production than oxidative phosphorylation,  
aerobic glycolysis is essential for tumor growth and 

 

 
 

Figure 7. Validation for prognostic value of risk signature. (A) K-M curves for train set, (B) K-M curves for validation set. 

https://string-db.org/cgi/input.pl?sessionId=FB2xhX96kIxn&input_page_show_search=on
https://string-db.org/cgi/input.pl?sessionId=FB2xhX96kIxn&input_page_show_search=on
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Figure 8. Verifying the prognostic and diagnostic value of risk signature is better than single biomarker. (A) K-M analysis,  
(B) ROC curve. 
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Table 5. Univariable analyses for each clinical feature. 

Clinical features Hazard ratio 95% CI p Value Hazard ratio 

Risk score 1.884 1.287-2.757 0.001 

 

T 1.656 1.383-1.984 <0.001 

M 4.050 1.274-12.880 0.018 

Stage 1.636 1.337-2.003 <0.001 

Neoplasm cancer status 2.801 1.766-4.444 <0.001 

New tumor event after initial treatment 1.912 1.218-3.000 0.005 

Abbreviations: T, Tumor; N, Node(regional lymph node); M, Metastasis; 95% CI,  95% Confidence Interval 
 

Table 6. Multivariable analyses for each clinical feature. 

Clinical features Hazard ratio 95% CI p Value Hazard ratio 

Risk score 1.884 1.287-2.757 <0.001  

T 1.656 1.383-1.984 0.001 

M 4.050 1.274-12.880 0.617 

Stage 1.636 1.337-2.003 0.957 

Neoplasm cancer status 2.801 1.766-4.444 <0.001 

New tumor event after initial treatment 1.912 1.218-3.000 0.005 

Abbreviations: T, Tumor; N, Node(regional lymph node); M, Metastasis; 95% CI,  95%Confidence Interval 
 

survival [10], by stimulating carbon fluxes to bio-
synthetic pathways. Increase NADPH synthesis and 
oxidative defense to meet cell proliferation needs [11]. 
In the case of cancer and energy metabolism, we have 
thought of biomarker, although there are many studies 
on cancer and glycolysis, the research that involved 
biomarkers of cancer related to glycolysis is limited. In 
our research this time, we tried to identify a glycolysis-
related biomarkers for patients with HCC. 
 
A biomarker is defined as any substance, structure or 
process that can be measured in the body and influence 
or predict the incidence of outcome or disease [12]. 

Recent studies demonstrated that clinicopathological 
features such as age, sex, tumor death, margin status, 
and metastatic diagnosis are insufficient to accurately 
predict patient prognosis [13]. The ideal biomarker is 
readily available, reliably measurable, cost-effective, 
minimally invasive and highly accurate [14]. Therefore, 
in the cancer, more and more mRNAs might be useful as 
molecular markers of the patients’ prognosis, indicating 
their important clinical significance should be explored 
[15]. For example, elevated GalNAc-T mRNA expres-
sion in melanoma cells appears to be a biomarker for 
aggressive melanoma [16], Han et al. confirmed that the 
MAGE family member A9 had significantly higher 
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expression in laryngeal squamous cellcarcinoma and 
could be used as an independent prognostic factor in 
patients with laryngeal squamous cell cancer [17]. The 
expression of HERV-K in the PBMC has to do with the 
diagnosis of prostate cancer, particularly in elder men 
and smokers [18]. However, these biomarkers still exist 
to be insufficient to predict the survival of patients 
independently. In particular, because the expression of a 

single gene can be interfered by many factors through 
various ways, it is difficult to provide powerful 
functional predictive effects for such information. For 
this reason, here we use a statistical model to construct a 
gene signature containing several related genes, 
combined with the prediction effect of each component 
gene to improve prediction efficiency. This model is 
widely used and is superior to single biomarkers in 

 

 
 

Figure 9. Stratified analysis for prognostic value of risk signature for the patients. (A–B) Stratified analysis for patients divided into 
person neoplasm cancer status, (C–D) Stratified analysis for patients divided into new tumor event after initial treatment, (E–F) Stratified 
analysis for patients divided into grade. 
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Figure 10. Expression of six proteins in HCC tissues. (A) Representative immunohistochemistry staining of the six proteins, (B) The 
sample number of high and low expression of each protein. (***p<0.001, ****p<0.0001). 
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Figure 11. Validation for prognostic value of six proteins and risk signature. (A) K-M curves for DPYSL4, HOMER1, ABCB6, CENPA, 
CDK1 and STMN1, (B) K-M curves for risk score. 
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predicting disease prognosis [19–21]. In our study, in 
order to confirm that the gene signature is more 
significant than the single gene biomarker, we verified 
it with the KM analysis and the ROC curve in  
HCC, and the results showed that our hypothesis  
is correct. When the six genes act as a single 
biomarker respectively, their diagnostic significance 
was not better than the six-mRNA signature (Figure 
7). And for more in-depth research, the six genes  
and the mechanisms of glycolysis and HCC need 
further study. 
 
Excluding in HCC, the above-mentioned methods (KM 
analysis and the ROC curve) combined with univariate 
and multivariate analysis were also performed in some 
other common cancers including KIRC, COAD, BRAC, 
OV to develop a glycolysis-related risk signature as a 
prognostic biomarker. And only HCC showed the 
strong relationship with glycolysis. In this regard, we 
conducted an in-depth discussion. When the results of 
GO enrichment analysis for target genes related with 
glycolysis were shown in HCC, we found that the most 
relevant enriched CC (Cellular Component) terms were 
associated with the golgi apparatus (Figure 3). The 
Golgi apparatus is a major glycosylation site of the cell 
and plays an essential role in the secretory pathway 
[22]. And it is the central organelle along the eukaryotic 
secretory and endocytic pathway [23]. Thus, the golgi 
apparatus is the most in cells that require a large amount 
of synthetic protein. In other words, cells with a 

secretory effect have more golgi bodies, for example, 
glandular cells (endocrine glands, digestive glands, 
etc.), as well as organs with high metabolic rates such as 
the liver. As the largest digestive gland in the human 
body, the liver can also secrete some immune globulins 
and some hormones. Considering that all of the above 
results are based on data analysis, we used immuno-
histochemical method to detect the protein level of these 
genes in HCC tissues. The results of immunohisto-
chemistry were consistent with those of our data 
analysis, which confirmed that the expression level of 
these proteins in HCC tissues was significantly higher 
than that in adjacent tissues. In summary, when we 
develop a glycolysis-related risk signature as a 
prognostic biomarker, the result that only HCC showed 
the strong relationship with glycolysis is reasonable. 
Our findings provide novel insight to the relationship 
between glycolysis and HCC and we laid a solid 
foundation for future research. 
 
In conclusions, we first identified and validated a six-
gene risk signature related to glycolysis that can predict 
the outcome of patients with HCC, where higher risk 
scores indicate unfavorable survival. And we also 
provide novel insight into the relationship between 
glycolysis and HCC. This signature could be a 
promising prognostic targets in clinical practice, it is 
useful for verifying patients with HCC with poor 
prognoses. These results might offer a new view for the 
research of HCC and individual treatment. 

 

 
 

Figure 12. The correlation of the six proteins in 55 HCC tissues. 
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MATERIALS AND METHODS 
 
Patient clinical parameter and the genome 
expression data 
 
Whole genome expression profiles and clinical data sets 
of tumor patients were extracted from the Cancer 
Genome Atlas Database (TCGA, The Cancer Genome 
Atlas, https://cancergenome.nih.gov/). In this study, we 
first downloaded the clinical pathological parameters 
and genome-wide expression profiles of four common 
solid tumors from the TCGA database, including colon 
adenocarcinoma, renal clear cell carcinoma, HCC, and 
breast invasive carcinoma. A total of 309 patients with 
HCC and 50 normal specimens with clinical features 
matched for subsequent study were included. 
 
Functional enrichment analyses 
 
GSEA (http://www.broadinstitute.org/gsea/index.jsp) 
was performed to explore whether identified sets of genes 
showed significant differences between two groups [24]. 
GSEA does not require the specification of a clear 
differential gene threshold. The algorithm provides 
researchers with an overall trend of the actual data to 
enable the researchers to examine the overall expression 
of several genes even without prior experience; thus, this 
approach improves the connection between the 
mathematical statistics of the expression of the data and 
the biological meaning [25]. The expression levels of all 
mRNAs in adjacent noncancerous tissue and tumor 
samples were analyzed. Normalized p values (P<0.05) 
were used to determine which gene set to further 
investigate. Functional enrichment analyses for those 
filtered genes were performed using the DAVID (The 
Database for Annotation, Visualization and Integrated 
Discovery) Bioinformatics Tool (version 6.7) [26]. 
Significant enrichment results were visualized using 
EasyChart (http://www.ehbio.com/ImageGP/index.php/ 
Home/Index/index.html). 
 
Prognostic analysis 
 
The relationship between the expression level of each 
mRNAs and the patient OS was calculated using a 
univariate Cox model. In univariate variable Cox 
analysis, mRNAs with p values less than 0.05 were 
considered statistically significant. After that, the multi-
variable Cox analysis was used to evaluate the weight of 
mRNAs as the independent predictor of survival. These 
analyses were conducted using the R package of survival. 
 
Statistical analysis 
 
The filtered mRNAs were classified into risk (HR > 1) 
and protective (0 < HR < 1) types. Subsequently, a 

prognostic risk score formula was established based on 
a linear combination of the expression levels weighted 
with the regression coefficients derived from the 
multivariate Cox regression analysis. 
 
Risk score = expression of gene 1×β1 + expression of 
gene 2×β2 +......+ expression of gene n×βn. We 
classified 309 patients into high-risk and low-risk 
subgroups using the median risk score as the cutoff. 
Kaplan-Meier curves and the log-rank method were 
used to validate the prognostic significance of the risk 
score in stratified analysis. The Student's t test was 
performed to examine the differential expression of 
optimal genes in adjacent normal tissue and GC tissues. 
All of the statistical analyses were performed using 
SPSS 16.0 and GraphPad Prism 7.0 software. We also 
researched the genetic alterations of prognosis-related 
genes in HCC by cBioPortal web software 
(http://www.cbioportal.org/). Chi-square test was used 
to demonstrate the relationship between risk score and 
clinical parameters. Scikit-learn package of Python was 
used to do the cross validation. 
 
Tissue microarray construction and immunohisto-
chemistry 
 
After reviewing the hematoxylin and eosin-stained slides, 
55 paired representative paraffin blocks (2007-2017) of 
HCC and adjacent tissue samples were selected. Tissue 
cores were extracted from each donor block using a 1.5 
mm diameter puncture needle, and arrayed into a new 
paraffin recipient block with a maximum of 60 cores. 
Sections were obtained from re-prepared blocks, 
mounted on poly-L-lysine-coated glass slides, and used 
for immunohistochemical staining. Sections were 
deparaffinized and exposed to antigen retrieval at 121°C 
for 5 min using an autoclave (pH 7.8 Tris-EDTA-citrate 
buffer). Sections were then incubated with primary 
antibodies against DPYSL4, HOMER1, ABCB6, 
CENPA, CDK1 or STMN1 (Sangon Biotech, China) at 
37°C for 60 min, followed by incubation with 
biotinylated secondary antibodies at 37°C for 30 min. 
The sections were then incubated with horseradish 
peroxidasecoupled streptavidin for additional 30 min 
(LSAB kit; Dako, Glostrup, Denmark), and stained with 
DAB. Sections were then dehydrated. 
 
Evaluation of immunohistochemistry 
 
The immunostaining was evaluated under the light 
microscope (magnification, ×200; select three fields/ 
view) by two pathologists blinded to the experimental 
conditions. The intensity of immunoreactivity was 
scored as follows: zero for no staining, one for weak 
staining, two for moderate staining, and three for strong 
staining. The proportion of positive tumor cells was as 

https://cancergenome.nih.gov/
http://www.broadinstitute.org/gsea/index.jsp
http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html
http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html
http://www.cbioportal.org/
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follows: zero (no positive cells), one (<25% positive 
cells), two (26-50% positive cells), three (51-75% 
positive cells), four (>75% positive cells). The score is 
obtained by calculating the product of intensity of 
immunoreactivity and proportion of positive tumor 
cells. Score >= six represents high expression, 
otherwise it is low expression. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 
 

 
 

Supplementary Figure 1. The differentially expressed genes between high-risk and low-risk patients related to the gene 
signature. (A) Enrichment plots of differentially expressed genes, (B) Networks regulated by risk score-associated genes in HCC constructed 
by Cytoscape. (Low degree to bright colors for map nodes color, low degree to small sizes for map nodes size, Low combined-score to small 
sizes for map edge size.) 
  



www.aging-us.com 10882 AGING 

Supplementary Table 
 
Please browse Full Text version to see the data of Supplementary Table 1. ID of train and validation group. 
 


