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INTRODUCTION 
 

Alzheimer’s disease (AD) is a neurodegenerative 

disorder that typically manifests in middle-aged or 

elderly individuals. It is the most prevalent type of 

dementia among older adults, responsible for 60-80% of 

all cases, as reported by the Alzheimer’s Association of 

America [1]. AD is characterized by symptoms such as 

memory loss, language impairment, diminished thinking 
skills and behavioral changes, which eventually lead to 

severe cognitive impairment and loss of mobility [2, 3]. 

The cause of AD is still unknown and there is no 

complete cure available. Currently, medication and 

behavioral therapy can only help control the symptoms 

of the disease. Therefore, early diagnosis and 

intervention are crucial for patients. Amyloid β-protein 

(Aβ) is an abnormal protein that deposits in the brains 

of AD patients, leads to neuronal damage and cell 

death. Research has demonstrated that Aβ can produce 

reactive oxygen species (ROS), which are harmful 

chemicals that cause oxidative stress (OS), resulting in 

the death of nerve cells and impairing the structure and 
function of brain tissue [4]. Some studies have proved 

the important role of OS in AD. For example, the 

deficiency of Sirtuin-3 (SIRT3), a mitochondrial 

deacetylase, has been found to cause hyperactivity, 
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ABSTRACT 
 

Alzheimer’s disease (AD) is a neurodegenerative condition causing cognitive decline. Oxidative stress (OS) is 
believed to contribute to neuronal death and dysfunction in AD. We conducted a study to identify differentially 
expressed OS-related genes (DEOSGs) through bioinformatics analysis and experimental validation, aiming to 
develop a diagnostic model for AD. We analyzed the GSE33000 dataset to identify OS regulator expression profiles 
and create molecular clusters (C1 and C2) associated with immune cell infiltration using 310 AD samples. Cluster 
analysis revealed significant heterogeneity in immune infiltration. The ‘WGCNA’ algorithm identified cluster-
specific and disease-specific differentially expressed genes (DGEs). Four machine learning models (random forest 
(RF), support vector machine (SVM), generalized linear model (GLM) and extreme gradient boosting (XGB)) were 
compared, with GLM performing the best (AUC = 0.812). Five DEOSGs (NFKBIA, PLCE1, CLIC1, SLCO4A1, TRAF3IP2) 
were identified based on the GLM model. AD subtype prediction accuracy was validated using nomograms and 
calibration curves. External datasets (GSE122063 and GSE106241) confirmed the expression levels and clinical 
significance of important genes. Experimental validation through RT-qPCR showed increased expression of 
NFKBIA, CLIC1, SLCO4A1, TRAF3IP2, and decreased expression of PLCE1 in the temporal cortex of AD mice. This 
study provides insights for AD research and treatment, particularly focusing on the five model-related DEOSGs. 

mailto:11854588@qq.com
https://orcid.org/0000-0001-7875-4433
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 10390 AGING 

reduced survival, and increased oxidative stress in 

cultured neurons. However, inhibiting ROS levels may 

reverse these effects. These findings highlight the 

importance of SIRT3 in regulating neuronal excitability 

in Alzheimer’s disease, particularly in relation to 

oxidative stress [5]. Studies have found that dioscin can 

reduce oxidative stress and inflammatory response in 

Alzheimer’s disease by down-regulating the expression 

levels of RAGE and NOX4, and up-regulating the 

expression levels of Nrf2 and HO-1. Additionally, 

dioscin inhibits p-NF-κB (p-p65)/NF-κB(p65), AP-1, 

and inflammatory factors involved in inflammatory 

pathways [6]. In a mouse model of Alzheimer’s 

disease induced by streptozotocin (STZ), activation of 

the G-protein-coupled receptor 55 (GPR55) has been 

found to have neuroprotective effects. Specifically, 

GPR55 activation was shown to reduce oxidative stress, 

neuroinflammation, and synaptic dys-function in mice 

[7]. The above studies have demonstrated the significant 

role of OS in AD. However, there are few studies to 

further explore the impact of multiple OS-related genes 

on the diagnosis, treatment and prognosis of AD. 

In this study, we identified molecular markers linked  

to OS and developed a diagnostic model with high 

sensitivity and specificity. This model can aid in the 

diagnosis and monitoring of AD. These findings enhance 

our understanding of the disease’s pathogenesis and  

offer a reference for the development of more accurate 

biomarkers and diagnostic methods. In future research, 

we will delve deeper into the biological functions and 

clinical applications of these molecular markers. This 

will enable us to provide improved support for the early 

detection and treatment of AD. 
 

RESULTS 
 

Dysregulation of OS regulators in AD patients 
 

To investigate the role of OS regulators in the develop-

ment of AD, we analyzed the expression profiles of  

83 OS regulators in AD patients and non-AD controls 

from the GSE33000 dataset using ‘differ.R’ software. 

The entire study procedure is illustrated in Figure 1. 

Initially, we identified 51 differentially expressed OS 

 

 
 

Figure 1. Flow chart of the study. 
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regulators (DEOSGs). The study found that certain genes 

(NOS3, SOD2, IL6, OLR1, etc.) were expressed at 

higher levels in the cortex tissues of individuals with  

AD compared to those without the disease. On the  

other hand, the expression levels of other genes (MPO, 

MAPK8, GSR, POLR1C, etc.) were significantly lower 

in the cortex tissues of individuals with AD. The 

distribution of these differentially expressed genes on 

chromosomes is shown in Figure 2C. Subsequently, we 

conducted a correlation analysis to investigate whether 

OS regulators play a critical role in the development of 

AD. Our findings revealed synergistic effects between 

HADHB and HADHA, IL1β and IL6, CAT and 

NFE2L2, while MPO and PNPT1, ACADVL and 

PRDX2, TP53 and POLR1C showed antagonistic  

effects (Figures 2D, 2E). These results suggest a 

potential relationship among these DEOSGs. 

Identification of OS clusters in AD 

 

The AD samples were classified using the ‘cluster R’ 

algorithm based on the expression of the 51 DEOSGs 

mentioned earlier. When the k value was set to 2,  

the resulting cluster model was the most stable and 

effectively separated the samples into two clusters, C1 

and C2 (as shown in Figures 3A). The CDF curve 

remained within a reasonable range of the consensus 

index (0.2-0.8) during this process (as depicted in 

Figures 3B, 3C). The output of tSNE analysis con-

firmed the previously observed difference between the 

two clusters (Figure 3D). To further investigate the 

functional characteristics of the clusters, we conducted 

GSVA analysis, which revealed that Cluster 2 was 

enriched in ‘basal transcription factors’, ‘regulation of 

autophagy’, and ‘ubiquitin mediated proteolysis’, while 

 

 

 

Figure 2. Identification of dysregulated 51 DEOSGs in AD. (A) Heatmap presented the 51 DEOSGs. (B) Boxplots showed the expression 

of 51 DEOSGs between Treat (AD) and Control (non-AD). (C) The location of 51 DEOSGs on chromosomes. (D) Gene relationship network 
diagram of 51DEOSGs. (E) Correlation analysis of 51 DEOSGs. 



www.aging-us.com 10392 AGING 

Cluster 1 showed upregulation of ‘hematopoietic cell 

lineage’, ‘cytokine receptor’, and ‘JAK-STAT signaling 

pathway’ (Figure 3E). 

 

Analysis of immune infiltration characteristics in AD 

patients and OS clusters 

 

To investigate the variation of AD in the immune 

system, we utilized the CIBERSORT algorithm to 

compare the proportions of 22 different immune cell 

types in two groups - AD and control (Figure 4A). The 

results showed that AD patients had a higher infiltration 

degree of T cells CD4 naive, T cells CD4 memory 

resting, NK cells resting, Monocytes, Macrophages M2, 

and Neutrophils (Figure 4B). These findings suggest 

that immunomodulation may play a crucial role in  

the occurrence of AD. Meanwhile, the study revealed 

distinct immune characteristics between OS Cluster1 

and Cluster2, as shown in Figure 4C. Cluster 2 had 

relatively higher levels of NK cells resting, Monocytes, 

Macrophages M1, Eosinophils and Neutrophils, while 

Cluster 1 had higher abundance of B cells memory, T 

cells CD8, NK cells activated and Mast cells resting, as 

illustrated in Figure 4D. 

 

Development of WGCNA co-expression network and 

module detection 

 

In order to analyze the major gene modules of AD, the 

co-expression network and prospective modules were 

established using the “WGCNA” algorithm. The top  

25% genes with the highest variance (2439 genes) were 

clustered and merged into eleven distinct co-expression 

modules (Figure 5A, 5B). The correlation between the 11 

color modules and typical clinical features (i.e., AD and 

ND) was analyzed using Pearson’s correlation analysis. 

Interestingly, the ME turquoise module, consisting of 759 

genes, showed a strong correlation with the ‘Treat (AD)’ 

trait. Additionally, a positive relationship was observed 

between the two (Figure 5C, 5D). The ‘WGCNA’ 

 

 
 

Figure 3. Identification of OS molecular clusters in AD. (A) Consensus clustering matrix when k = 2. (B, C) CDF delta area curves and the 

score of consensus clustering. (D) t-SNE analysis. (E) GSVA analysis between Cluster1 and Cluster2. 



www.aging-us.com 10393 AGING 

algorithm was continuously used to identify and 

construct important gene modules related to OS 

clusters. The exploration process was consistent with 

previous analyses, and 11 different models were 

identified as significant co-expression modules (Figure 

5E, 5F). In the clinical features module, there was a 

strong correlation between the ME black turquoise 

module (which contains 245 genes) and OS Cluster1 

and OS Cluster2. This was demonstrated in Figure  

5G, 5H. Based on this finding, certain key genes from 

the ME turquoise module that are associated with 

Alzheimer’s disease and the ME black turquoise 

module that are related to OS Clusters were selected for 

further analysis. 

 

Identification of the specific DEGs through machine 

learning models 

 

The study identified 33 overlapping differentially 

expressed genes (DEGs) from two WGCNA  

co-expression results (Figure 6A). These 33 DEGs were 

used to establish four machine learning models (RF, 

SVM, GLM, and XGB) using the ‘model R’ package. 

The results in Figure 6B, 6C show that the GLM and 

XGB models had relatively lower residual regulation. 

Subsequently, the top 10 important feature DEGs of 

each online machine learning models were ranked  

and presented in Figure 6D using root mean square  

error (RMSE) analysis. Additionally, we evaluated the 

efficacy and sensitivity of the four learning algorithms 

by calculating the receiver operating characteristic (ROC) 

curve based on 5-fold cross-validation. The study found 

that SVM and GLM algorithms had a high area under 

the ROC curve (AUC) with SVM having an AUC of 

0.951, GLM having an AUC of 0.945, XGB having  

an AUC of 0.938, and RF having an AUC of 0.914 

(Figure 6E). Based on these results, the GLM model  

was identified as the best method for distinguishing  

AD patients with OS clusters. Additionally, the top five 

important DEGs (NFKBIA, PLCE1, CLIC1, SLCO4A1, 

 

 
 

Figure 4. Comparison of OS molecular clusters and AD patients in terms of immune characteristics. (A, B) The relative 
abundances of 22 infiltrated immune cells between AD samples and controls. (C, D) The relative abundances of 22 infiltrated immune cells 
between two OS molecular clusters. *p < 0.05; **p < 0.01; ***p < 0.001. 
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and TRAF3IP2) from the model were selected for further 

analysis. Finally, the GLM model for GSE122063 dataset 

showed an AUC value of 0.812 with a 95% confidence 

interval of 0.654 - 0.947. This indicates that our diagnosis 

model has a high ability to distinguish between in-

dividuals with AD and normal individuals, as displayed 

in Figure 6F. 

Construction of the nomogram model and immune 

cell infiltration 

 

The ‘rms’ package was used to construct a nomogram 

model based on five specific genes (NFKBIA, PLCE1, 

CLIC1, SLCO4A1 and TRAF3IP2) to evaluate and predict 

the risk of AD. The calibration curve showed high 

 

 
 

Figure 5. Co-expression network of DEGs in AD and two DEOSGs clusters. (A) The detection of soft threshold power in AD.  

(B) Cluster tree dendrogram of co-expression modules in AD patients. (C) Scatter plot in ME turquoise module and the DEGs significance for 
AD. (D) Heatmap of association of module feature genes with several clinical states. (E) The detection of soft threshold power in two 
DEOSGs clusters. (F) Cluster tree dendrogram of co-expression modules in the two DEOSGs clusters. (G) Scatter plot ME black module and 
the DEGs significance for the two DEOSGs clusters. (H) Correlation heatmap between two DEOSGs clusters. 
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predictive accuracy for the nomogram model, as depicted 

in Figure 7B, 7C. We further investigated the correlation 

between these five DEOSGs and inflammation, as  

shown in Figure 8A–8E, which confirmed the correlation 

between five diagnostic DEOSGs and 22 immune  

cells. The study found a positive correlation between 

CLIC1 and immune cells, specifically Neutrophils and 

Macrophages M2. However, there was a negative cor-

relation between CLIC1 and T cells CD4 memory 

activated (Figure 8A). Additionally, the results showed 

that NFKBIA was positively correlated with T cells CD4 

memory resting, but negatively correlated with NK cells 

activated (Figure 8B). Finally, PLCE1 was found to be 

positively correlated with Macrophages M1 and M2, but 

negatively correlated with T cells CD8 (Figure 8C).  

In Figure 8D, SLCO4A1 showed a positive correlation 

with Neutrophils and NK cells resting, but a negative 

correlation with NK cells activated. Similarly, in Figure 

8E, TRAF3IP2 exhibited a positive correlation with 

Neutrophils and Monocytes, but a negative correlation 

with NK cells activated and T cells CD8. 

 

Relationships of hub DEOSGs and clinical 

characteristics 

 

The relationships between five DEOSGs and clinical 

characteristics age (GSE33000), beta-secretase activity 

and Aβ-42 levels (GSE106241, NFKBIA was not 

 

 

 

Figure 6. Identification of cluster-specific DEGs of machine models. (A) 33 overlapping DEGs of two WGCNA co-expression. (B, C) 

Residuals for the four machine learning models. (D) The important features in the four machine models. (E) ROC analysis. (F) The AUC 
values of GLM model in GSE122063 dataset. 
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discovered in the dataset) were depicted in Figure 9. 

Three DEOSGs (PLCE1, SLCO4A1, and NFKBIA) did 

not show any significant difference, whereas CLIC1 and 

TRAF3IP2 exhibited a positive correlation with age 

(CLIC1, R = 0.12; TRAF3IP2, R = 0.14) as depicted in 

Figure 9A–9E. The study found that, apart from 

SLCO4A1 and TRAF3IP2, the other DEOSGs (PLCE1, 

R = 0.44; CLIC1, R = 0.35) showed a positive correlation 

with Aβ-42 level (Figure 9F–9I). Additionally, all four 

DEOSGs were found to be positively associated with 

beta-secretase activity (Figure 9J–9M). 

 

Validation of DEOSGs by other GEO datasets and 

experimental validation in AD animal samples 

 

The study assessed the expression value of model-

related specific DEOSGs (NFKBIA, PLCE1, CLIC1, 

SLCO4A1, and TRAF3IP2) in the GSE33000 and 

 

 
 

Figure 7. The nomogram model (based on the five DEOSGs) in GSE122063. (A) The nomogram. (B) The DCA curve. (C) The curve of 

calibration. 
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GSE122063 datasets, which served as the validation set 

for AD. The findings indicated that, with the exception 

of PLCE1, which did not show the same trend (down-

regulated in GSE33000 and up-regulated in GSE122063), 

the other four DEOSGs were elevated in both data- 

sets (Figure 10A–10J). Based on this, we further used 

APP/PS1 mice (AD group) and C57BL/6 mice (control) 

for in vitro experimental verification. Firstly, we detected 

the levels of MDA, ROS, GSH and OSI in the mice 

cortex. The results showed a significant increase in 

ROS (Figure 11A), MDA (Figure 11B) and OSI  

(Figure 11D) levels, while an obvious decrease in GSH 

level of AD mice (Figure 11C), indicating that the 

pathogenesis of AD is closely related to the activation 

of oxidative stress. Next, to deeply verify the reliability 

of the five DEOSGs in the mice cortex of AD, RT-

qPCR was conducted. The results showed a significant 

enhancement in the expression of NFKBIA, CLIC1, 

SLCO4A1 and TRAF3IP2, while the expression of 

PLCE1 was observed to be decreased in the AD model 

(Figure 11E–11I). Additionally, to quantitatively assess 

the internal index in AD model, brain sections were 

stained for the expression of these five proteins. To 

evaluate the internal index in AD model, brain sections 

were stained for the expression of five proteins. The 

results showed that the AD group had higher staining 

for NFKBIA, CLIC1, SLCO4A1, and TRAF3IP2, while 

PLCE1 had lower staining compared to the control 

(Figure 11J, 11K). Based on these findings, we conclude 

that these specific DEOSGs have the potential to be 

effective diagnostic biomarkers for AD, supporting our 

previous speculations. 

 

DISCUSSION 
 

Alzheimer’s disease is a degenerative disease that 

progresses over time, primarily affecting memory and 

cognitive function. This disease places a significant 

burden on the patient and their family. Currently, there 

are several challenges in treating AD, including the 

 

 
 

Figure 8. Immune cell infiltration of the five DEOSGs. (A) The correlation analysis of immune cell infiltration with CLIC1. (B) The 
correlation analysis of immune cell infiltration with NFKBIA. (C) The correlation analysis of immune cell infiltration with PLCE1. (D) The 
correlation analysis of immune cell infiltration with SLCO4A1. (E) The correlation analysis of immune cell infiltration with TRAF3IP2. 
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difficulty of early diagnosis, limited treatment options, 

and slow progress in research [8, 9]. To address the 

aforementioned challenges, it is imperative to reinforce 

fundamental research, explore novel diagnostic and 

therapeutic approaches and medications, and offer 

patients with more tailored medical services. For 

instance, by considering the patient’s unique charac-

teristics and health status, healthcare providers can 

choose the most suitable treatment and medication to 

enhance the efficacy of the treatment while minimizing 

the likelihood of adverse reactions [10, 11]. Therefore, 

this study aims to identify more suitable oxidative  

stress molecular clusters for the early prediction and 

individualized treatment of Alzheimer’s Disease. 

 

To achieve this, the study performed a comprehensive 

DEOSGs expression profiling by comparing the 

expression profiles of normal and AD patient brain 

tissues. The results showed that several DEOSGs  

were significantly different in expression between  

the two groups, indicating their potential for further 

investigation. To investigate the potential interaction 

between DEOSGs in AD, we performed a correlation 

analysis and identified some DEOSGs that exhibited 

synergistic or antagonistic effects. We then used un-

supervised cluster analysis to group the 51 DEOSGs into 

two clusters (C1 and C2) based on their expression 

levels. To further understand the functional differences 

between these clusters, we conducted GSVA analysis 

and found that cluster C2 was enriched with “basal 

transcription factors”, “autophagy regulation” and 

“ubiquitin-mediated proteolysis”. In contrast, “cytokine 

receptors” and “JAK-STAT signaling pathway” were 

upregulated in C1. These above pathways are related  

to the formation and development of AD [12, 13].  

These aforementioned pathways are associated with  

the formation and progression of AD. The presence  

of distinct enriched pathways may lead to varying 

prognoses for patients with AD. By determining the 

cluster to which a patient belongs, we can make a 

preliminary assessment of their potential prognosis.  

At the same time, AD patients have higher levels of  

T cell CD4 naive, T cell CD4 memory resting, NK cell 

resting, neutrophils and monocytes compared to healthy 

 

 
 

Figure 9. The correlation between five DEOSGs and clinical characteristics. (A–E) Correlation between PLCE1 (A), CLIC1 (B), 

SLCO4A1 (C), TRAF3IP2 (D), NFKBIA (E) and age (GSE33000). (F–I) Correlation between PLCE1 (F), CLIC1 (G), SLCO4A1 (H), TRAF3IP2 (I) and Aβ-
42 (GSE106241). (J–M) Correlation between PLCE1 (J), CLIC1 (K), SLCO4A1 (L), TRAF3IP2 (M) and beta-secretase activity (GSE106241). 
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individuals. These findings are consistent with previous 

research and suggest a strong link between AD and  

the immune system [14]. In patients with Alzheimer’s 

disease, a significant increase in CD4+ T lymphocytes 

has been observed, indicating an alteration in the post-

thymic maturation of antigen-specific lymphocytes. 

Specifically, the accumulation of effector memory and 

terminally differentiated lymphocytes is observed in  

AD patients compared to healthy controls. effector 

memory cells differentiate from central memory cells in 

the presence of antigens and cytokines such as IL-7. In 

the presence of a high antigenic load, effector memory 

cells further differentiate into terminally differentiated, 

which represent the end-stage effector cells. Therefore, 

the neuroinflammation associated with AD can be 

characterized as a complex impairment of the immune 

response, exhibiting a pronounced skewing towards 

inflammatory and effector responses [15, 16]. Evidence 

suggests that depletion of NK cells in triple transgenic 

AD mouse models can alleviate neuroinflammation, 

promote neurogenesis, and improve cognitive function. 

NK cell depletion does not significantly affect the 

concentration of beta-amyloid proteins but enhances 

neurogenesis and reduces neuroinflammation [17]. 

Zenaro et al. identified that in two transgenic models  

of Alzheimer’s disease (5xFAD and 3xTg-AD mice), 

neutrophil infiltration and localization within amyloid-

beta (Aβ) deposits were accompanied by the release  

of neutrophil extracellular traps (NETs) and IL-17. 

Furthermore, the study highlighted the significance of 

LFA-1 integrin in regulating neutrophil extravasation  

into the central nervous system and their movement 

within the parenchyma. Depleting neutrophils or inhi-

biting their trafficking via LFA-1 blockade resulted in a 

reduction of Alzheimer’s disease-like neuropathology 

and an improvement in memory in cognitively impaired 

mice [18]. Yan et al. observed a higher proportion  

of peripheral monocytes contributing to the presence  

of macrophages in the choroid plexus, meninges, and 

perivascular spaces surrounding blood vessels in aged 

AD mice compared to normal control mice. This finding 

suggests an enrichment of potential sites for peripheral 

monocyte infiltration into the brain parenchyma. Notably, 

splenectomy significantly reduced circulating monocytes 

and diminished the abundance of plaque-associated 

macrophages derived from definitive hematopoiesis, 

resulting in an increased amyloid plaque load. These 

findings indicate that peripheral-derived monocytes 

infiltrate the brain parenchyma, targeting amyloid 

plaques to reduce plaque burden [19]. These results  

also provide support for the potential use of immuno-

therapy as a treatment for AD. Cluster 1 showed a 

higher abundance of B cell memory, T cell CD8, NK  

cell activation, and mast cell quiescence. Additionally, 

DEOSGs of cluster 1 are enriched in the JAK/STAT 

pathway, which plays a crucial role in promoting 

neuroinflammation in neurodegenerative diseases like 

AD [20]. This pathway initiates innate immunity,

 

 
 

Figure 10. The expression value of NFKBIA, PLCE1, CLIC1, SLCO4A1 and TRAF3IP2. (A–E) Validated in the GSE33000. (F–J) Validated 
in the GSE122063. *p < 0.05; **p < 0.01; ***p < 0.001. 
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Figure 11. The expression value of NFKBIA, PLCE1, CLIC1, SLCO4A1 and TRAF3IP2 in AD animal model. (A) Detection of ROS 

level in the cortex of mice brain. (B) Detection of MDA level in the cortex of mice brain (n = 5). (C) Detection of GSH level in the cortex of 
mice brain (n = 5). (D) Detection of OSI level in the cortex of mice brain (n = 5). (E–I) RT-qPCR for NFKBIA, PLCE1, CLIC1, SLCO4A1 and 
TRAF3IP2 in the cortex of mice brain (n = 5). (J, K) IHC for NFKBIA, PLCE1, CLIC1, SLCO4A1 and TRAF3IP2 in the mice brain. *p < 0.05; **p < 
0.01; ***p < 0.001. OSI: Oxidative stress index. 
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coordinates adaptive immune mechanisms, and 

ultimately suppresses neuroinflammatory responses. 

This suggests that patients with C1 may have a better 

prognosis. 

 

To investigate the association between oxidative stress 

and AD pathogenesis, the levels of oxidative stress 

markers, including ROS, MDA, GSH, and OSI, were 

measured in the cortex of AD and control mice. The 

significant increase in ROS, MDA, and OSI levels, 

along with the noticeable decrease in GSH level, 

strongly suggests the activation of oxidative stress 

pathways in AD. Other studies have also observed  

the importance of biomarkers or indicators such as  

ROS, MDA, OSI, and GSH in the pathogenesis of  

AD. Under normal physiological conditions, reactive 

oxygen species (ROS) play crucial roles in cellular 

signal transduction and gene transcription activation. 

However, when the accumulation of ROS surpasses  

the antioxidant capacity, they can attack vital bio-

molecules within the cell, such as phospholipids, 

proteins, and nucleic acids, thereby disrupting normal 

cellular functions. This excessive ROS accumulation  

can stimulate mitochondria to produce pro-apoptotic 

proteins, leading to apoptotic cell death in neuronal cells 

within the central nervous system [21]. MDA, OSI, and 

GSH, among other biomarkers or indicators, are widely 

employed for evaluating the extent of oxidative damage 

to biomolecules. Sterubin, a flavonoid compound, has 

been identified as a neuroprotective agent capable of 

reducing the expression of inflammatory biomarkers 

(such as IL-6, IL-β, and TNF-α) as well as oxidative 

stress markers (such as SOD and MDA) in order to 

prevent chemically-induced Alzheimer’s disease in rats 

[22]. Within the brain system, GSH plays a pivotal role 

as an essential enzymatic antioxidant, serving as a 

defense mechanism against oxidative damage caused  

by reactive oxygen species (ROS) [23]. A prospective 

study, HELIAD, reported that higher baseline plasma 

GSH levels were associated with a reduced risk of 

developing Alzheimer’s disease (AD) and better pre-

servation of longitudinal executive function [24]. 

 

When building a predictive model, machine learning 

algorithms utilize historical data to identify features 

associated with predictor variables [25]. In this study,  

we compared the prediction performance of machine 

learning classifiers, including RF, SVM, GLM, and XGB, 

based on the expression profiles of 33 hub DEOSGs 

obtained by intersection. Ultimately, we established a 

prediction model based on GLM. We constructed a  

5-gene-based GLM model (NFKBIA, PLCE1, CLIC1, 

SLCO4A1 and TRAF3IP2) by selecting five important 
variables. One of these variables is NFκB inhibitor  

alpha (NFκBIα), which encodes a protein that interacts 

with REL dimers and inhibits the NFκB/REL complex 

involved in inflammatory responses. Studies have reported 

that loss-of-function mutations upstream of NF-κB affect 

NF-κB activity in AD patients, leading to anatomical 

defects such as shrinkage of the entorhinal cortex and 

early AD limbic system [26]. Phospholipase C epsilon  

1 (PLCE1) is an enzyme that plays a crucial role in  

the regulation of various cellular processes such as  

cell growth, differentiation, and gene expression [27].  

It catalyzes the hydrolysis of phosphatidylinositol- 

4,5-bisphosphate, which leads to the production of two 

second messengers that are responsible for regulating 

these processes. Recent studies have shown that in 

Alzheimer’s disease, the activation of chloride intra-

cellular channel 1 (CLIC1) is necessary for β-amyloid-

induced production of reactive oxygen species by 

microglia [28]. Additionally, Solute carrier organic anion 

transporter family member 4A1 plays a crucial role  

in the transportation of various compounds, such as 

sugars, bile salts, organic acids, metal ions, amines,  

and estrogens [29]. Another protein, TRAF3 interacting 

protein 2 (TRAF3IP2), regulates the response of members 

of the Rel/NF-κB transcription factor family to cytokines 

[30]. The pathway is crucial for AD. Our diagnostic 

model showed an AUC value of 0.812 and a 95%  

CI of 0.654-0.947 in the GSE122063 validation data- 

set, indicating high diagnostic efficacy and universal 

applicability. Therefore, we proceeded to use these five 

genes to develop a nomogram model for early diagnosis 

of AD, providing convenience to clinicians for timely 

intervention. The results of the immune cell correlation 

analysis in the external data set GSE106241 confirmed 

the relevance of these genes to the immune system, 

indicating the need for further investigation. Numerous 

studies have demonstrated that elevated levels of Aβ-42 

and increased β-secretase activity are major pathological 

mechanisms contributing to the progression and poor 

prognosis of AD [31, 32]. Therefore, we performed  

a correlation analysis of genes from AD samples  

from GSE106241 with Aβ-42 levels and β-secretase 

activity. Our findings revealed that all predictive genes  

were positively correlated with Aβ-42 level (with the 

exception of TRAF3IP2 and SLCO4A1) and β-secretase 

activity with statistical significance. To confirm our 

findings, we analyzed the expression of five genes in 

two different datasets (GSE33000 and GSE122063). We 

observed that four of these DEOSGs were upregulated  

in both datasets, while only PLCE1 showed a different 

trend (downregulated in GSE33000 and upregulated  

in GSE122063). To further validate our bioinformatics 

predictions, we generated AD animal models and per-

formed RT-qPCR on treated brain tissue samples. The 

results of the vivo experiment showed a significant 

increase in the levels of NFKBIA, CLIC1, SLCO4A1, 
and TRAF3IP2 mRNA, while the expression of PLCE1 

was significantly decreased. These results are consistent 

with previous analyses. Therefore, the GLM model 
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consisting of these five DEOSGs could be a reliable 

indicator for evaluating AD subtypes and pathological 

outcomes in AD patients. 

 

CONCLUSIONS 
 

In conclusion, our study has revealed the correlation 

between OS-related genes and immune cell infiltration 

in AD patients with distinct OS clusters, highlighting 

the heterogeneity of the immune system. We have 

identified and validated five DEOSGs (NFKBIA, 

PLCE1, CLIC1, SLCO4A1, and TRAF3IP2) that can 

accurately predict the pathological outcome of AD 

patients. Our findings may provide new insights into  

the treatment and monitoring of AD. However, further 

studies are needed to uncover the underlying molecular 

mechanisms. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

Gene expression data were obtained from the  

GEO database (http://www.ncbi.nlm.nih.gov/geo). The 

training dataset consisted of 157 controls and 310  

AD cases, downloaded from the GSE33000 dataset 

(GPL4372 platform). Validation dataset was obtained 

from GSE122063 (GPL16699 platform). Clinical data 

from GSE106241 (GPL24170 platform) were used to 

validate the correlation of the genes in the final model. 

 

Analysis of differential expression genes 

 

We utilized the “limma” R package to analyze the 

Differential Expression Genes (DEGs) between AD 

and control groups in GSE33000. The DEGs were 

selected based on the criteria of |log2FC| > 0.58 and 

P<0.05. Subsequently, we identified the differentially 

expressed OS-related genes (DEOSGs) from the  

DEGs list, utilizing the OS-related websites (https:// 

www.genecards.org/) as a reference. 

 

Unsupervised clustering processing 

 

In this study, we utilized unsupervised cluster analysis 

with the ‘ConsensusClusterPlus’ R package to classify 

AD patients based on previously obtained sets of 

DEOSGs. The k-means algorithm was used with 1,000 

iterations to assign 310 AD samples into different 

clusters. We conducted a study where we chose the 

maximum number of subtypes (k=9) and evaluated  

the optimal number of clusters using cumulative 

distribution function (CDF) curves, consensus matrix, 
and consensus clustering score (>0.9). To analyze the 

data, we performed a principal component analysis 

(PCA) with the “factoextra” R package. Prior to this, we 

standardized and normalized GSE33000 using the function 

normalize between arrays in the “limma” R package. To 

illustrate significantly deregulated genes, we utilized the 

‘ggplot2’ and ‘ComplexHeatmap’ packages to generate 

volcano plots and heat maps, respectively. 

 

Gene set variation analysis (GSVA) analysis 

 

The GSVA is a technique utilized to analyze gene 

expression profiling data. It aids in the identification of 

unique gene expression patterns and assesses the activity 

levels of specific biological processes or pathways  

in each sample. The ‘c2.cp.kegg.v7.4.symbols’ file was 

obtained from the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb/) and used in conjunction with 

the ‘GSVA’ package in R to perform GSVA enrichment 

analysis. This allowed for the identification of enriched 

gene sets among different DEOSGs clusters, which were 

then displayed as histograms. 

 
Gene expression profiles of immune cell infiltration 

in AD 

 
To determine the relative abundance of infiltrating 

immune cells in various populations, we utilized the 

“CIBERSORT” algorithm. This algorithm estimated  

the potential proportion of infiltrating immune cells  

by referencing a set of 22 sorted immune cell subtypes  

for each sample in the control and treatment groups,  

as well as the C1 and C2 cohorts. In CIBERSORT, 

deconvolution P-values are calculated for each sample 

using a Monte Carlo sampling method to estimate relia-

bility. We performed 1000 permutations and generated 

corresponding P values. 

 
Validation of co-expression genes 

 
In this study, the ‘WGCNA’ R package was utilized to 

cluster genes based on their expression patterns in 

GSE33000, leading to the formation of distinct modules. 

The focus was on analyzing the relationship between 

genes and phenotypes/traits within these modules. To 

construct a co-expression network, the top 25% of genes 

in the dataset were analyzed for variance. A weighted 

adjacency matrix is first generated, followed by its 

conversion into a topological overlap matrix (TOM). 

Using the TOM difference metric (1-TOM), modules are 

obtained through a hierarchical clustering tree algorithm 

with a minimum module size of 100. Meanwhile, we 

utilized two types of significance measures: module 

significance (MS) and gene significance (GS). MS 

describes the relationship between modules and disease 

states, while GS describes the correlation between genes 
and clinical phenotypes. To identify possible correlations 

between modules and patients’ clinical characteristics, 

we conducted Pearson correlation analysis. 

http://www.ncbi.nlm.nih.gov/geo
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
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Construct predictive models through various 

machine learning methods 

 
To obtain hub DEOSGs, we intersected the DEOSGs of 

the control group vs treat group and the C1 vs C2 

clusters. Using these hub DEOSGs, we applied various 

R packages such as ‘caret’, ‘DALEX’, ‘randomForest’, 

‘kernlab’ and ‘xgboost’ to establish four machine 

learning models - random forest (RF), support vector 

machine (SVM), generalized linear model (GLM) and 

extreme gradient boosting (XGB). To facilitate the 

selection of a machine learning model, we utilized box 

plots and ROC curves to display the outcomes of the 

four models. 

 
Construction a nomogram model 

 
In order to facilitate the assessment of Alzheimer’s 

disease (AD) risk, this study utilized the ‘rms’ R 

software package to develop a nomogram model. The 

model is based on the hub genes of the Generalized 

Linear Model (GLM) machine learning model, which 

assigns scores to each gene. The total score is then  

used to determine the risk of disease occurrence. 

Additionally, the predictive ability of the model was 

evaluated using decision curve analysis (DCA) and 

calibration curves. 

 
Validation of predictive models 

 
In this study, two brain tissue datasets, GSE122063  

and GSE106241, were utilized to evaluate the effective-

ness of predictive models in distinguishing Alzheimer’s 

disease (AD) from non-AD using the ‘pROC’ R package. 

Additionally, the relationship between hub DEOSGs 

and various immune cells was analyzed in GSE106241. 

To further understand the differential expression of 

these genes in AD and non-AD, their expression was 

visualized in both the training set and GSE106241. In 

GSE106241, the relationship between hub DEOSGs  

and age, Aβ-42 levels, and β-secretase activity was 

investigated using spearman correlation analysis. P < 

0.05 were considered statistically significant. 

 
Experimental animals 

 
A total of 30 8-month-old APP/PS1 mice and 10  

same-line and same-month-old C57BL/6 wild-type 

mice, all SPF grade, were purchased from Beijing 

Huafukang Biotechnology Co., Ltd. The animals are 

kept in the Experimental Animal Center of Jinan 
University, with suitable temperature and humidity. 

All the animal experiments were reviewed and approved 

by the Experimental Animal Welfare Ethics Committee 

of Jinan University, Guangzhou. 

RNA collection, reverse transcription, and RT-

qPCR 
 

RNA was collected from temporal cortex of AD  

mice by the use of TRIzol (Invitrogen, USA). The  

RNA concentration was measured under Nanodrop ND-

1000 spectrophotometry (Nanodrop Tech, USA) and 

RNA integrity was detected with denatured agarose  

gel electrophoresis. cDNA was acquired by reverse 

transcription using the SuperScript VILO cDNA Kit. 

The primers were constructed and synthesized by 

Sangon Biotechnology (Shanghai, China). RT-qPCR 

was conducted with the iQ5 RT-qPCR Detection System 

(Bio-Rad Laboratories, USA) following manufacturer’s 

instructions. In this, all the primers were listed in Table 1. 
 

Immunohistochemistry (IHC) 
 

The tissues were preserved with 4% paraformaldehyde 

(15 min), immersed in paraffin, and cut into an average of 

4 μm slices. The antigens were extracted after dewaxing 

and dehydration. The completed slices were then fixed 

with 3% hydrogen peroxide for 20 min and blocked at 

room temperature for 15 min with 5% BSA. Whereafter, 

anti-NFKBIA (#4814; 1:100; CST), anti-PLCE1 (ab121476; 

1:80; Abcam), anti-CLIC1 (ab219265; 1:100; Abcam), anti-

SLCO4A1 (ab122124; 1:50; Abcam) and anti-TRAF3IP2 

(ab5973; 1:100; Abcam) were incubated at 4° C overnight, 

using Antibody Diluent Solution (Life-iLab, Shanghai, 

China). The segments were colored by the color-developing 

agent for 3-15 min and then were washed, redyed, de-

hydrated, transparent, and sealed in sequence, which  

were detected by SP kits (Solarbio, Beijing, China). 

Finally, these slices were put under a light microscope for 

observation and photography. 
 

Measurement of ROS, MDA, GSH and oxidative 

stress index (OSI) 
 

Intracellular ROS level was detected by the ROS Assay 

Kits (Beyotime; S0033; Haimen, China) according to  

the recommended manuals. The MDA and GSH levels 

were conducted using MDA Assay Kit (Beyotime; S0131; 

Jiangsu, China) and GSH Assay Kit (Nanjing Jiancheng 

Bioengineering Institute; A006-2-1; Nanjing, China) 

according to the instructions. Moreover, oxidative stress 

was deeply measured by the oxidative stress index  

(OSI) which was the ratio of TOS (Randox Laboratories, 

County Antrim, UK): TAC (Randox Laboratories, County 

Antrim, UK) (Bennett Plasma oxidative stress in repro-

duction of two eusocial African mole-rat species, the 

naked mole-rat and the Damaraland mole-rat). 
 

Statistical analysis 
 

One-way analysis of variance (ANOVA) and the paired 

samples t-test were utilized to evaluate differences 
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Table 1. Primer list. 

Gene Primers 

NFKBIA 
Forward: 5'-TCCACTCCATCCTGAAGGCTAC -3' 

Reverse: 5'- CAAGGACACCAAAAGCTCCACG -3' 

PLCE1 
Forward: 5'- AGAGCCTACTCTTTGACCACGG -3' 

Reverse: 5'- GTCTGAGACCATGAAGCTCTGG -3' 

CLIC1 
Forward: 5'- CCAGAGACTGTTCATGGTGCTC -3' 

Reverse: 5'- TCGGTGCCATAGAGCAAGAACG -3' 

SLCO4A1 
Forward: 5'- TGGCAAGACTGTCAGAGACCTG -3' 

Reverse: 5'- CGGCAATGAGTGTGGCTTCAGT -3' 

TRAF3IP2 
Forward: 5'- GTCATCCTGAATGACTCCAGCC -3' 

Reverse: 5'- GGAAGGTCCAAGGACTCCTCAG -3' 

GAPDH 
Forward: 5'- ATCACTGCCACCCAGAAGAC -3' 

Reverse: 5'- ACACATTGGGGGTAGGAACA -3' 

 

between groups, while Pearson’s correlation test was 

used to analyze correlations. Statistical analyses were 

performed using SPSS 25.0 software and GraphPad 

Prism 8.0.1. All data are presented as mean ± SD,  

and all experiments were conducted independently and 

repeated three times. A significance level of P < 0.05 

was considered statistically significant. 

 

Data availability statement 

 

The datasets were downloaded from the GEO (https:// 
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