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INTRODUCTION 
 
Bladder cancer (BLCA) has high risks of recurrence and 
mortality [1]. In 2022, the new cases of BLCA are about 
92,000 in China [2]. BLCA can be classified into two 
patterns pathologically. Specifically, 75% of BLCA 
patients are diagnosed with non-muscle invasive 
bladder cancer (NMIBC), and the rest are muscle-
invasive bladder cancer (MIBC) [3]. Early diagnosis 
and timely treatment can improve outcomes for BLCA 
patients. The common treatments for high-risk NMIBC 
and MIBC include radical cystectomy, cisplatin-based 
chemotherapy, and immunotherapy [4]. Cisplatin-based 
chemotherapy can improve the overall survival of 

advanced BLCA patients [5]. Immunotherapy against 
PD-1/PD-L1 is also a promising treatment for BLCA 
[6]. Despite the advancement in therapeutics, the 
response duration to chemotherapy and immunotherapy 
is limited [6, 7]. BLCA patients experience unfavorable 
prognosis even after chemotherapy or immunotherapy. 
Therefore, it is an urgent need for us to investigate 
novel biomarkers. 
 
Disulfidptosis is a pioneering approach to cellular 
demise that uniquely influences apoptosis in cancerous 
cells through the alteration of cytoskeletal protein 
structures. Furthermore, this process is intricately 
linked to changes in the cellular oxidation-reduction 
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ABSTRACT 
 
Disulfidptosis is a newly discovered mode of cell death. However, its biological mechanism in bladder cancer 
(BLCA) is still uncharacterized. In this investigation, we firstly examined the expression and mutation of 
disulfidptosis-related genes (DRGs) in BLCA. Two disulfidptosis phenotypes associated with DRGs expression 
patterns and immune cell infiltration were built. A disulfidptosis risk score signature was constructed based on 
ten differentially expressed genes (DEGs) between the disulfidptosis subtypes, which allowed patients to be 
stratified into high- and low-risk groups. We further confirmed that the disulfidptosis risk score signature has 
great power to predict prognosis, immune cell infiltration, and immunotherapy efficacy in BLCA. Additionally, 
we analyzed the differences in therapeutic sensitivities between high- and low-risk groups concerning targeted 
inhibitor therapy and immunotherapy. Analysis of single-cell RNA sequencing was conducted of the ten hub 
DRGs. Of the ten genes, we found that DUSP2 and SLCO1B3 were differentially expressed in BLCA tissues and 
adjacent normal tissues, and were markedly associated with patients’ prognosis. Functional experiments 
revealed that overexpression of DUSP2 or knockdown of SLCO1B3 significantly inhibited cell proliferation, 
migration, and invasion in BLCA cells. In all, we present a fresh disulfidptosis-related prognostic signature, 
which has a remarkable capacity to characterize the immunological landscape and prognosis of BLCA patients. 
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(redox) balance. Research highlights a profound 
correlation between cancer progression and disulfide 
bond metabolism, whereby elevated levels of 
SLC7A11 counteract disulfidptosis under glucose-
deficient conditions by facilitating cystine uptake 
[8, 9]. The essence of disulfide metabolism lies in its 
crucial role in managing intracellular redox activities, 
which are governed by the dynamics of disulfide bond 
formation and disruption. Oxidative stress, a common 
challenge in cancer cells, precipitates complexities in 
disulfide metabolism, thereby impacting cell survival 
and multiplication [10, 11]. As such, disulfidptosis 
represents an innovative strategy for controlling cancer 
development, yet further research is needed to 
elucidate its unique mechanisms. The metabolic 
intricacies of disulfide within oncogenic cells are 
linked to a spectrum of biological processes, including 
immune evasion, metastatic spread, and therapy 
resistance [12, 13]. Additionally, the role of 
disulfidptosis in eliciting tumor immune responses 
merits attention. It has the capacity to trigger tumor 
immune cells, augmenting immune attack by tumor-
specific T cells, enhancing both antibody-mediated 
and cell-mediated immunity, and potentially refining 
cancer therapies. Identifying new biomarkers 
associated with disulfidptosis could pave the way for 
connecting disulfide metabolism-related targets and 
pathways to cancer vulnerability. 
 
Recent studies have shown that disulfidptosis is closely 
related to BLCA. The most recent study constructed a 
convenient prognostic risk model by combining 
disulfidptosis and M2 tumor-associated macrophages 
(TAMs) to facilitate individualized treatment and drug 
choices for BLCA patients [14]. However, no other 
study has assessed the role of disulfidptosis in BLCA. 
This study aimed to investigate the potential biological 
mechanism of disulfidptosis. Specifically, expression 
and mutation of DRGs in BLCA were investigated. The 
results showed two distinct disulfidptosis phenotypes to 
be associated with DRG expression patterns and 
immune cell infiltration. A novel disulfidptosis risk 
signature was also developed based on ten DEGs 
between disulfidptosis subtypes to predict the prognosis 
of BLCA patients. Additionally, we defined two 
phenotypes and conducted single-cell RNA sequencing 
(scRNA-seq). However, only two of the ten hub genes 
(DUSP2 and SLCO1B3) were differentially expressed 
at the single-cell level in BLCA tissues and adjacent 
normal tissues. DUSP2 and SLCO1B3 were also 
strongly associated with patient prognosis. Finally, 
functional experiments were performed to explore the 
effect of DUSP2 and SLCO1B3 on the malignant 
behaviors of BLCA cells. This study provides new ideas 
for individualized management of BLCA patients based 
on disulfidptosis. 

MATERIALS AND METHODS 
 
BLCA datasets and preprocessing 
 
In this research, a comprehensive collection of 1020 
BLCA samples was compiled from TCGA, GSE13507, 
GSE31684, GSE32894, and GSE37815 datasets. A 
diverse dataset was assembled, encompassing somatic 
mutations, copy number variations (CNVs), and 
detailed survival profiles. The analysis utilized 
normalized matrix files from the GEO database and 
TCGA gene expression metrics, calculated as fragments 
per kilobase million (FPKM) values, which were 
converted to transcripts per million (TPM) values for 
unified analysis. This study employed the ComBat 
algorithm via the R ‘SVA’ package to mitigate batch 
effects and other nonbiological variations [15]. Single-
cell RNA sequencing data from GSE135337 [16] were 
also integrated, adhering to established quality control 
and postanalysis protocols. Cell annotations were 
carried out per the original methodology, with the 
“FindAllMarkers” and “FindMarkers” functions applied 
to conduct Wilcoxon tests for cluster-specific gene 
expression identification. Gene expression visualization 
was achieved using the ‘featureplot’ function. The 
scRNA-seq data from GSE130001 are accessible 
through the Tumor Immune Single-cell Hub (TISCH) 
database (http://tisch.comp-genomics.org/home/). 
 
Unsupervised clustering based on DRGs 
 
A diverse set of 26 DRGs was compiled from various 
studies to explore distinct patterns of disulfidptosis 
associated with these genes [9]. Using the 
“ConsensusClusterPlus” package in R, hierarchical 
agglomerative clustering analysis was applied. This 
approach utilized stability metrics from unsupervised 
analysis to ascertain the optimal number of clusters and 
their members. By performing the analysis across 1,000 
repetitions, the reliability of the stability metrics was 
ensured, confirming the dependability of the clustering 
results [17]. 
 
Gene set variation analysis 
 
Using the “GSVA” package in R, enrichment analysis 
was carried out to identify variations in biological 
processes among disulfidptosis subtypes. This method, 
which is both nonparametric and unsupervised, allowed 
for assessment of changes in the activity of pathways and 
biological processes across different gene expression 
datasets. The analysis incorporated Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) datasets from the MSigDB database for 
evaluating disulfidptosis-associated pathways, which 
were illustrated through heatmap visualizations [18]. 
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Immune cell infiltration 
 
The “GSVA” package in R was used for single-sample 
gene-set enrichment analysis (ssGSEA) to quantify 
immune cell infiltration (ICI) levels within each sample. 
Initially, data on expression of immune cell markers 
were obtained from a study by Charoentong. The 
ssGSEA method was then applied to calculate an 
enrichment score reflecting the relative abundance of 
immune cells in each sample. This enabled comparative 
analysis of ICIs across different disulfidptosis subtypes 
based on the calculated scores [19]. 
 
Identification of DEGs between disulfidptosis 
subtypes in BLCA 
 
Differential expression analysis of genes across 
disulfidptosis subtypes within BLCA was conducted 
using the “Limma” package in R [20]; the threshold for 
significance was set at an adjusted p value of less than 
0.01. Furthermore, to understand the roles of these 
DEGs, functional annotation was carried out with the 
“clusterProfiler” package in R, focusing on GO and 
KEGG analyses [21]. 
 
Construction of the disulfidptosis score 
 
Prognostically significant DEGs were identified through 
univariate Cox regression analysis to assess their 
predictive value. Subjects were divided into two gene 
clusters, A and B, and subsequently split into a training 
group (n = 452) and a test group (n = 452). A risk score 
model for DEGs was formulated using the training 
group, applying the LASSO technique to minimize 
overfitting and refine the DEGs to a final list of ten 
genes for prognostic modeling. The model’s risk score, 
or disulfidptosis score, was calculated with the 
following formula: Risk score = Σ (Expi × Coefi), 
where Coefi represents the coefficient of risk and Expi 
is the expression level of each gene. This division 
created low- and high-risk categories for patient 
stratification. Survival and ROC curve analyses were 
conducted within the training cohort, with further 
validation in both the test cohort and the entire cohort. 
A nomogram, designed using the “RMS” R package, 
facilitated individual survival probability predictions, as 
complemented by calibration curves to forecast 1-, 3-, 
and 5-year survival probabilities for bladder cancer 
patients. 
 
Prediction of multiple therapeutic sensitivities 
 
This research sought to examine differences in the 
response to targeted inhibitor (TI) therapies and 
immunotherapy between individuals classified into 
high-risk and low-risk groups. The median inhibitory 

concentration (IC50) for TIs, such as those in the Notch, 
Hedgehog (HH), and Wnt pathways, was assessed using 
the “pRRophetic” R package [22]. Wilcoxon rank-sum 
tests were applied to compare IC50 values across the 
risk groups. A comprehensive evaluation of genes 
linked to the immune response, including genes related 
to effector cells, MHC complexes, and regulatory immune 
factors, was undertaken to assess immunogenicity. This 
assessment was refined through machine learning 
techniques to ensure accuracy. The immunophenoscore 
(IPS), an indicator of immunotherapy response, was 
compared between groups treated with various 
immunotherapeutic approaches. An exhaustive review 
of databases on immunotherapy-treated subjects was 
conducted [23]. Specifically, data from the metastatic 
urothelial carcinoma study (IMvigor210) were 
processed with the “IMvigor210CoreBiologies” and 
“edgeR” R packages, followed by normalization and 
transformation using “limma’s” voom method. 
Additionally, prognostic and immunotherapy response 
data, including disulfidptosis scores from the 
IMvigor210 cohort, were compiled [24]. 
 
scRNA-seq analysis of hub DRGs 
 
Single-cell RNA sequence analysis was conducted 
using the “Seurat” and “SingleR” R packages. Quality 
control was stringently applied to the raw cell matrix, 
demanding that genes must be present in at least five 
cells, cells must exhibit more than 100 genes, and cells 
must be removed i mitochondrial gene expression 
exceeds 5%. Normalization of the scRNA-seq data was 
performed using “Seurat,” adopting “LogNormalize”  
as the normalization technique. This process 
transformed the data into a Seurat object, with 
“FindVariableFeatures” pinpointing the top 1,500 
variable genes. Principal component analysis (PCA) 
was then applied to these genes using “RunPCA,” with 
dimensionality reduction focusing on these key genes. 
The JackStraw method was used to determine 
significant components, and the first 15 PCs were 
selected for clustering analysis. “FindNeighbors” and 
“FindClusters” were pivotal in the clustering, 
leveraging Euclidean distances within PCA for graph 
construction and neighbor identification. The 
“RunTSNE” function facilitated t-SNE for improved 
clustering visualization. Differential expression across 
clusters was assessed with the Wilcoxon-Mann- 
Whitney test via “FindAllMarkers,” with stringent 
criteria for marker identification. 
 
Cell culture and transfection 
 
Three human BLCA cell lines (UMUC-3, 5637, and 
T24) and a normal human uroepithelial cell line  
(SV-HUC-1) were acquired from the Chinese Academy 
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of Sciences. The cells were cultured in RPMI-1640 
medium supplemented with 10% FBS and 1% 
penicillin/streptomycin at 37°C and 5% CO2. 
Overexpression and silencing plasmids were 
constructed by GenePharma (Shanghai, China). Cell 
transfection was performed following the 
manufacturer’s instructions. The transfection efficiency 
was evaluated via qRT-PCR and western blotting. 
 
qRT-PCR 
 
Total mRNA was extracted from cells using TRIzol 
(Bioshape). Reverse transcription was performed using 
Fasting gDNA Dispelling RT SuperMix Kit with the 
following experimental conditions: initial temperature 
of 42°C for 15 minutes and 95°C for 3 minutes. qRT-
PCR was performed using a real-time PCR system 
(Applied Biosystems Life Technologies, USA). The 
2ΔΔCT method was used to assess relative expression 
levels. The following primers were used: 
 
DUSP2 forward primer: 5′-TGGACGAGGCCTTTGA 
CTTC-3′; reverse primer: 5′-GAAGAGCACCAGGTC 
GGAAA-3′. 
GAPDH forward primer: 5′-AGTCCACTGGCGTCTT 
CAC-3′; reverse 5′-GAGGCATTGCTGATGATCTT 
GA-3′. 
SLCO1B3 forward primer: 5′-CAGCACACTTGGGTG 
AATGC-3′; reverse primer: 5′-AGCCCAAGTAGACC 
CTTCCA-3′. 
GAPDH forward primer: 5′-AGGAGTAAGACCCCTG 
GACC-3′; reverse primer: 5′-ACATGGCAACTGTGA 
GGAGG-3′. 
 
CCK-8 assay 
 
The effect of DUSP2 and SLCO1B3 on cell 
proliferation in BLCA was assessed using a CCK-8 
assay. Briefly, cells were digested and then seeded into 
a 96-well plate (1000 cells/well). The cells were treated 
with CCK-8 (10 μL/well) and incubated at 37°C for 24, 
48, or 72 h. Absorbance at 450 nm was assessed using a 
microplate reader. 
 
Ethynyl-2′-deoxyuridine (EdU) assay 
 
Cells were seeded and cultured and then incubated with 
EdU working solution. The cells were fixed with 4% 
paraformaldehyde for 30 minutes, stained with an EdU 
kit (Beyotime), and visualized under a fluorescence 
microscope (Olympus). 
 
Wound-healing assay 
 
Cells (1 × 106 cells) were seeded in a 6-well plate at 5% 
CO2 and 37°C until they reached 90% confluence. The 

cells were incubated and then scraped with a pipette tip to 
create wounds. The gap distance was measured. A 
microscope was used to acquire images (Olympus, Japan). 
 
Transwell invasion assay 
 
The invasion ability of BLCA cells was assessed using 
Transwell chambers (Corning Life Sciences). Briefly, 
the cells were seeded into the upper chamber coated 
with Matrigel (BD Biosciences) to form a matrix 
barrier. The Transwell membrane was then fixed with 
4% paraformaldehyde, followed by 0.5% crystal violet 
staining. The invading cells were counted using ImageJ 
software. 
 
Western blotting  
 
First, cells were lysed in buffer (Beyotime). Total protein 
was extracted, separated by SDS-PAGE and transferred 
to a PVDF membrane. The membrane was blocked with 
5% skim milk and then incubated with primary 
antibodies against SLCO1B3 (Cat No. 66381-1-Ig, 
1:4000), DUSP2 (Cat No: 27327-1-AP, 1:1000) and 
GAPDH (Cat No. 60004-1-Ig, 1:20000) from Proteintech 
Company. The membranes were washed and incubated 
with secondary antibodies (1:1000, Abcam). The protein 
bands were scanned, and images were obtained. 
 
Statistical analyses 
 
R software (version 4.0.5) was used for statistical 
analyses. The R packages “maftool” [25] and “rcircos” 
[26] were used to identify gene mutations and CNVs, 
respectively. P < 0.05 was considered to indicate a 
statistically significant difference. 
 
RESULTS 
 
Genetic variations in DRGs among BLCA patients 
 
An examination of 26 DRGs from recent studies 
revealed mutations in 136 of 412 samples analyzed. 
Among these genes, MYH10 was the most frequently 
mutated (Figure 1A). In the context of BLCA, CNVs 
within DRGs were notably prevalent, with a 
predominant occurrence of deletions and a substantial 
presence of amplification events in nearly half of the 
DRGs. Specifically, genes such as SLC3A2, ACTN4, 
OXSM, and TLN1 showed significant amplification, 
whereas the remaining genes were more prone to 
deletions (Figure 1B). Further investigation highlighted 
the chromosomal distribution of CNVs across the DRGs 
and explored how genetic alterations influence mRNA 
expression levels in BLCA, suggesting that CNVs 
might modulate DRG expression. Amplifications in 
genes such as SLC3A2, OXSM, and GYS1 were linked 
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to increased expression in cancer tissues, whereas genes 
such as NDUFS1 and NCKAP1 showed reduced 
expression, underscoring the diverse impact of DRG 
expression on BLCA pathology (Figure 1C, 1D). 
 
Two distinct disulfidptosis processes: phenotypes 
associated with DRG expression patterns and 
immune cell infiltration characteristics and 
biological behaviors 
 
Through univariate Cox proportional hazards regression 
and correlation analyses, intricate connections, 
relationships, and their prognostic relevance among 
DRGs were evaluated. The analysis pinpointed 18 genes 
closely tied to functional outcomes as significant 
predictors of BLCA patient survival outcomes (P < 
0.05), with a noted positive correlation among DRGs 
sharing prognostic similarities. Specifically, a 
substantial correlation was noted between expression of 
FLNA and that of several genes, whereas a negative 

correlation was found between genes associated with 
positive and negative survival outcomes. In particular, 
the beneficial effect of OXSM was inversely related to 
risk factors such as ACTB, TLN1, and FLNA (Figure 
2A). Furthermore, distinct expression patterns of DRGs 
in patients facilitated identification of two unique 
disulfidptosis clusters, A and B, through 
“ConsensusClusterPlus” analysis, with Cluster A 
showing more favorable prognosis (Figure 2B–2D). 
Heatmaps showcased the variance in DRG expression 
between these clusters, while KEGG and GSVA 
analyses highlighted the pronounced stromal signals in 
Cluster B (Figure 2E, 2F). PCA further underscored the 
potential of the DRGs to distinguish between BLCA 
patients and healthy controls. Analysis of ICIs revealed 
a significant diversity of immune cells in Cluster B, 
suggesting a complex immunological landscape within 
the tumor microenvironment indicative of the role of 
disulfidptosis in driving immunosuppressive and 
inflammatory responses (Figure 2G, 2H). 

 

 
 

Figure 1. Genetic and expression variation landscape of DRGs in BLCA. (A) Mutation frequency of DRGs in 412 BLCA patients from 
the TCGA cohort. (B) CNV frequency of DRGs. (C) CNV positions of DRGs on chromosomes. (D) Expression of 26 DRGs in normal and BLCA 
tissue. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Secondary clustering using DEGs and identification 
of prognostic-related subtypes 
 
By utilizing the “Limma” R package, 1213 DEGs were 
identified, shedding light on the diverse biological 

activities linked to disulfidptosis phenotypes (Figure 3A). 
GO and KEGG analyses highlighted the critical 
involvement of these DEGs in immune-related pathways 
within the tumor microenvironment (TME) (Figure 3B, 
3C). Subsequent univariate Cox analysis of these genes 

 

 
 

Figure 2. Patterns of disulfidptosis and biological characteristics of each pattern. (A) Interactions between DRGs. (B) Cumulative 
distribution function curve. (C) Consensus matrix of the BLCA cohort with k = 2. (D) Kaplan-Meier curves show that the disulfidptosis 
pattern is significantly associated with OS in 904 patients in the meta-cohort. (E) Unsupervised clustering analysis was performed on 26 
DRGs. (F) GSVA enrichment analysis showed the activation states of biological pathways in distinct disulfidptosis patterns. (G) Principal 
component analysis of the DRG clustering patterns. (H) The abundance of each TME infiltrating cell in two disulfidptosis patterns. *P < 0.05, 
**P < 0.01, ***P < 0.001. 
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underscored their prognostic significance in BLCA, and 
923 DEGs were identified for further prognostic 
exploration. Through unsupervised clustering of these 
DEGs, patients were categorized into two groups, 
revealing notable differences in survival outcomes 
linked to disulfidptosis-induced variations. This 

bifurcation revealed a marked survival advantage for 
patients in one cluster, aligning with specific 
disulfidptosis patterns; the other cluster indicated poorer 
prognosis (Figure 3D–3F). The disparity in DRG 
expression between these clusters validates the influence 
of disulfidptosis on disease progression (Figure 3G, 3H). 

 

 
 

Figure 3. Analysis of DEGs and functional annotation of disulfidptosis. (A) DEGs between gene groups. (B, C) Functional annotation 
of DRG cluster-related DEGs using GO and KEGG enrichment analysis. (D) Cumulative distribution function curve. (E) Consistency matrix of 
BLCA sequences with k = 2. (F) Kaplan-Meier curves showed that the disulfidptosis genomic phenotype was significantly associated with OS 
of BLCA patients. (G) Unsupervised clustering of DEGs to classify patients into different genomic subtypes. (H) Expression of 26 DRGs in 
gene cluster A and B from the meta cohort. *P < 0.05, **P < 0.01, ***P < 0.001. 
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The disulfidptosis score and its predictive power for 
prognosis in multiple cohorts 
 
A disulfidptosis score was established to explore 
disulfidptosis traits thoroughly. Initially, participants 
were allocated to a training set or a test set. LASSO 
regression analysis of 923 genes revealed ten genes 
significantly linked to disulfidptosis outcomes (Figure 
4A, 4B). Through multivariate Cox regression, these 

genes were classified into risk categories, shaping the 
prognostic landscape. Notably, gene coefficients were 
meticulously calculated, facilitating a nuanced 
understanding of their prognostic impact. This led to 
identification of distinct subtypes and gene clusters, 
revealing profound prognostic differences between 
them (Figure 4C). A detailed examination revealed a 
significant variation in disulfidptosis score between the 
clusters, highlighting the precision of the method

 

 
 

Figure 4. Establishment of the DRGs risk score and its interaction with tumor clinicopathological characteristics. (A) Cross-
validation was performed for tuning parameter selection in the LASSO Cox regression model. (B) LASSO coefficient profiles of the DRGs. 
(C) Sankey diagram showing the changes of DRG clusters, survival status, gene cluster, and disulfidptosis score. (D) Differences in disulfidptosis 
score between 2 DRG clusters. P < 0.001). (E) Differences in disulfidptosis score among 2 gene clusters. The Kruskal-Wallis test was used to 
compare the statistical difference between 2 gene clusters. (F) The difference of DRG expression in low-risk and high-risk group. *P < 0.05, 
**P < 0.01, ***P < 0.001. 
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(Figure 4D, 4E). Additionally, disparities in DRG 
portrayals across disulfidptosis scores were observed 
(Figure 4F), emphasizing the discerning power of the 
method. Survival analysis within the training set 

revealed a marked prognostic divide, underlined by 
statistical significance (Figure 5A). The area under the 
curve (AUC) confirmed the efficacy of the prognostic 
model over various time frames (Figure 5B), while

 

 
 

Figure 5. Construction of the nomogram score system and its clinical predictive performance. (A) Kaplan-Meier curves showed 
that the disulfidptosis genomic phenotype was significantly associated with OS of patients in the training group. (B) ROC curves of the 
nomogram score system for BLCA patients in the training cohort. (C) Kaplan-Meier curves showed that the disulfidptosis genomic 
phenotype was significantly associated with OS of BLCA patients. (D) ROC curves of the nomogram score system for overall patients. 
(E) Kaplan-Meier curves showed that the disulfidptosis genomic phenotype was significantly associated with OS of patients in the validation 
group. (F) ROC curves of the nomogram score system for patients in the testing cohort. (G) Pie chart showing the survival status and clinical 
stage of patients in high and low-risk groups. (H–J) DCA curves of the nomogram score system for overall patients with 1, 3, 5 years. 
(K) Nomogram score system for overall patients. (L) Prediction curves of the nomogram score system for overall patients. 
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comparative survival analysis validated the superior 
prognosis of the low-risk group. Replicating these 
analyses in both the full cohort and the test set 
confirmed the model’s robust predictive ability (Figure 
5C–5F), with ROC curves affirming its accuracy 
(Figure 5E, 5F). Along with age and sex differences, 
survival outcomes differed significantly between risk 
groups (Figure 5G). A comprehensive nomogram 
incorporating multiple clinical factors was used as an 
advanced prognostic tool (Figure 5K), with calibration 
curves demonstrating its accuracy (Figure 5L). Decision 
curve analysis confirmed the utility of the nomogram in 
predicting survival outcomes at various intervals, 
demonstrating its potential for improving BLCA patient 
prognosis (Figure 5H–5J). 

The disulfidptosis score and its association with 
tumor mutation burden and genomic instability 
 
Genetic alterations play a pivotal role in cancer 
research. This investigation utilized somatic mutation 
data alongside disulfidptosis evaluations from TCGA to 
explore the implications of these data in BLCA. Our 
analysis highlighted TP53, TTN, and KMT2D as genes 
prevalently mutated in both risk groups (Figure 6A, 
6B). The analysis also distinguished patients into groups 
with a tumor mutational burden (TMB) higher or lower 
than the median, revealing that those with a higher 
TMB exhibited improved survival outcomes, 
positioning TMB as a potential prognostic indicator 
(Figure 6C). Dividing the patient sample further into 

 

 
 

Figure 6. Mutation analysis based on the risk score model. (A, B) Waterfall plots summarizing the mutation status of high and 
low-risk patients. (C) Kaplan-Meier curves of high and low TMB groups. (D) Kaplan-Meier curves of four groups classified by risk 
score and TMB. 
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four quadrants based on TMB and risk scores clarified 
the impact of these variables on survival, with a low 
TMB and high-risk scores indicating the poorest 
outcomes (Figure 6D). This research thus contributes to 
our understanding of the genetic landscape and 
prognostic nuances of BLCA. 

Immune cell infiltration characteristics and biological 
behaviors between igh- and low-risk groups 
 
Using the CIBERSORT algorithm, 22 types of 
infiltrating immune cells were quantified in both 
cohorts (Figure 7A, 7B). Figure 7C illustrates the 

 

 
 

Figure 7. Analysis of the immune microenvironment in different risk groups. (A) Differences in immune infiltration status 
between different risk groups were evaluated by cibersort algorithms. (B) Differences in immune cell infiltration between different risk 
groups. (C) Correlation between the expression of immune cell. (D) Correlation between the expression of hub disulfidptosis risk score 
genes and immune cells. (E) Differences in ICI scores between different risk groups. (F) The immune subtype of patients in high- and low-
risk groups. (G) Violin plot of stromal score, immune score, and estimate score between low and high-risk groups. (H) Correlation between 
the risk score and RNAss. 
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complex interactions among these immune cells. 
Notably, there was a significant variation in the presence 
of immune cells between the groups, with CD8+ T cells 
and Tregs showing reduced levels in the high-risk 
group, whereas M0 and M2 macrophages were elevated 
(Figure 7A). We also explored correlations between 
disulfidptosis-associated genes (PPP1R3C, SLC12A8, 
etc.) and immune cells using Pearson correlation 
analysis, as shown in Figure 7D. Further analysis using 
the ssGSEA method highlighted distinct immune 
landscape differences between the risk groups, 
particularly in B cells and Th2 cells (Figure 7E), and 
underscored a significant divergence in risk scores within 
immune subtypes (Figure 7F). Violin plots provided a 
visual comparison of stromal and immune scores and 
tumor purity between the risk groups, indicating notable 
differences (Figure 7G). Additionally, an inverse 
relationship was found between tumor stemness (RNA 
levels) and risk score, suggesting a decrease in stemness 
in the high-risk group (Figure 7H). 
 
The disulfidptosis score can predict immunotherapy 
efficacy 
 
The IMvigor210 cohort was analyzed to evaluate 
responses to anti-PD-L1 therapy, revealing a significant 

variation in risk scores among different response 
categories. Notably, a greater proportion of complete 
and partial responses was observed in the LR group 
(Figure 8A, 8B), with an AUC of 0.568 indicating the 
predictive value of the risk score (Figure 8C). Further 
analysis utilizing the TIDE score to predict immune 
evasion showed that individuals with lower risk scores 
were more likely candidates for immunotherapy (Figure 
8D–8J). Additionally, we assessed the sensitivity of 
low-risk versus high-risk patients to the common BLCA 
chemotherapy agent vinblastine and cisplatin and 
revealed increased sensitivity in the low-risk group 
(Figure 8K, 8L). The disulfidptosis score thus emerges 
as a crucial metric for predicting immunotherapy 
outcomes and chemotherapy sensitivity in BLCA 
patients, underscoring its value in tailoring patient-
specific treatment strategies. 
 
scRNA-seq analysis of ten hub disulfidptosis score-
related genes in BLCA 
 
Using the GSE135337 BLCA single-cell dataset, this 
study examined expression of ten pivotal genes 
associated with the disulfidptosis score within the  
TME. The initial steps included gene selection, data 
normalization, and dimensional reduction through 

 

 
 

Figure 8. The role of disulfidptosis patterns in immunotherapy and chemotherapy. (A) Kaplan-Meier curves of high and low-risk 
groups in IMvigor210. (B) The difference of disulfidptosis score between treatment outcome groups. (C) ROC curves of the nomogram score 
system for BLCA patients in IMvigor210. (D–J) Correlation between risk score and Tide score. (K–L) Correlation between risk score and 
Vinblastine and cisplatin sensitivity. 
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principal component analysis, setting the resolution at 
0.7 to delineate 37 distinct cell clusters, which was 
subsequently illustrated via t-SNE visualizations 
(Figure 9A–9C). Differential expression analysis 

highlighted cell type-specific genes (Figure 9D), with 
clusters annotated into five categories using marker 
genes from the CellMarker database (Figure 9E). 
Examination of the ten genes at the single-cell level 

 

 
 

Figure 9. scRNA seq analysis. (A, B) Performing gene filtering, normalization, principal component analysis of scRNA seq data. (C–E) 
Annotation of all cell types in GSE135337 and the percentage of each cell type. (F–H) Expression of the genes in each cell type. (I–K) Cell to 
cell communications between each cell type. 
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revealed their expression across five cell types, with 
seven genes being actively expressed (Figure 9F–9H). 
Additionally, interactions within the TME were 
mapped, particularly focusing on macrophage 
interactions with other cells and quantifying the 
interaction strength (Figure 9I) while noting prevalent 
interactions with monocyte cells among all cell types 
(Figure 9J). A bubble plot was constructed to detail  
cell-to-cell communication among the five cell types, 
offering insights into their interplay (Figure 9K). 
 
DUSP2 and SLCO1B3 were differentially expressed 
in BLCA and had effects on malignant behaviors in 
BLCA cells 
 
Finally, we performed expression and survival 
analyses on the ten genes included in the prognostic 
signature. Among them, DUSP2 and SICO1B3 were 
selected as key genes. At the single-cell level, the 
expression of DUSP2 and SLCO1B3 was significantly 
different between tumor tissue and normal tissue. 
Notably, the difference was more significant between 
bladder tumor epithelial cells and normal tissue 
(Supplementary Figure 1). Through differential 
expression analysis, we found that expression of 
DUSP2 was markedly lower in BLCA tissues than in 
normal tissues (Figure 10A). Kaplan-Meier survival 
analysis further demonstrated that DUSP2 was 
associated with worse OS in BLCA patients, 
suggesting that DUSP2 may be a prognostic indicator 
of BLCA (Figure 10B). DUSP2 mRNA expression 
was much lower in BLCA cells than in normal bladder 
cells (Figure 10C). Finally, to further investigate the 
biological role of DUSP2, functional experiments  
were conducted. The transfection efficiency of DUSP2 
was validated by qRT-PCR and western blotting 
(Figure 10D, 10E). CCK-8, EdU, wound healing, and 
Transwell invasion assays indicated that 
overexpressing DUSP2 significantly inhibited the 
proliferation, migration, and invasion of BLCA cells, 
suggesting that DUSP2 may play a tumor-suppressive 
role in BLCA (Figure 10F–10I). 
 
Differential analysis revealed that SLCO1B3 was 
significantly upregulated in BLCA tissues compared 
to normal tissues (Figure 11A). Kaplan-Meier 
survival analysis revealed that SICO1B3 was 
associated with poor prognosis in BLCA patients, 
demonstrating the potential prognostic role of 
SLCO1B3 (Figure 11B). mRNA expression of 
SLCO1B3 was significantly greater in BLCA cells 
than in normal bladder cells (Figure 11C). Expression 
of SLCO1B3 was downregulated in T24 cells. As in 
the DUSP2 experiments described above, functional 
assays were performed, and the transfection 
efficiency was validated by qRT-PCR and western 

blotting (Figure 11D, 11E). CCK-8, EdU, wound 
healing, and Transwell invasion assays demonstrated 
that knockdown of SICO1B3 significantly suppressed 
the proliferation, migration, and invasion of BLCA 
cells, suggesting that SICO1B3 acts as a tumor-
promoting gene (Figure 11F–11I). 
 
DISCUSSION 
 
BLCA ranks as a major urological cancer worldwide 
[27]. Treatment paradigms for BLCA have evolved, 
highlighting the effectiveness of cisplatin-based 
chemotherapies and the potential of immunotherapy 
with immune checkpoint inhibitors (ICIs), despite 
variable patient responses [28]. The concept of 
disulfidptosis is emerging as a promising area for 
innovative treatments, focusing on the tumor’s redox 
state and disulfide metabolism [29–30]. Research 
indicates that targeting disulfidptosis could offer new 
therapeutic avenues, as some tumors adapt their redox 
balance for survival and interact with treatments such as 
paclitaxel [31]. The biological role of disulfidptosis in 
lung and colon adenocarcinoma has been investigated 
[32, 33]. Nonetheless, there is a lack of researches in 
BLCA. 
 
In this investigation, we scrutinized genetic disparities 
within BLCA focusing on DRGs. MYH10 emerged as 
the most commonly mutated gene. A significant 
occurrence of CNVs in DRGs was observed, with a 
balanced distribution between deletions and 
amplifications, highlighting specific genes such as 
SLC3A2 and ACTN4 for amplification and FLNB for 
deletion. This analysis explored how these genetic 
changes influence mRNA expression, suggesting that 
CNVs may influence DRG expression levels. 
Amplification in certain DRGs corresponded with 
upregulation in cancerous tissues, in contrast to 
downregulation in other tissues. This study further 
delineated two disulfidptosis phenotypes, A and B, with 
distinct prognostic implications and immune cell 
infiltration patterns in the TME, underscoring the 
critical role of the TME in disulfidptosis and potential 
therapeutic targets for BLCA [34]. Through 
unsupervised clustering, two distinct disulfidptosis-
associated gene clusters were discerned, with Cluster A 
linked to enhanced survival outcomes compared to the 
less favorable prognosis of Cluster B. Additionally, the 
study highlighted the TMB as a pivotal factor in cancer 
progression and patient survival, underscoring its 
potential as a prognostic marker in BLCA. These 
findings align with existing research, reinforcing the 
prognostic value of the TMB in the context of BLCA. 
This insight underscores the importance of genetic 
profiling in predicting patient outcomes and tailoring 
therapeutic strategies [35]. 
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Most importantly, to deeply investigate the 
characteristics of disulfidptosis in BLCA, a 
disulfidptosis prognostic risk model was built, and its 
accuracy was verified. The model effectively predicted 

patient prognosis, immune infiltration, and drug 
efficacy. Compared with the disulfidptosis risk model of 
BLCA published previously [14], our model had a 
greater ability to predict prognosis and immune 

 

 
 

Figure 10. Overexpression of DUSP2 inhibited the proliferation, migration, and invasion of BLCA cells. (A, B) Differential 
analysis and survival analysis of DUSP2. (C) The mRNA expression of DUSP2 in BLCA cells and normal bladder cells. (D, E) The 
overexpression efficiency of DUSP2 was confirmed by qRT–PCR and western blotting. (F, G) CCK-8 and EdU assay were conducted to 
evaluate the proliferation ability. (H) Wound healing assay for the migration ability. (I) Transwell assay for the invasion ability. *P < 0.05,  
**P < 0.01. 
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infiltration. Previous research has shown that a greater 
degree of infiltration of CD8+ T cells may indicate 
better prognosis and immunotherapy response [36]. 
This is consistent with the present results. We 

investigated differences in the proportions of infiltrating 
immune cells between two groups, with the low-risk 
group showing an increase in CD8+ T cells. These 
patients had better prognosis and immunotherapy 

 

 
 

Figure 11. Downregulation of SLCO1B3 inhibited the proliferation, migration, and invasion of BLCA cells. (A, B) Differential 
analysis and survival analysis of SLCO1B3. (C) The mRNA expression of SLCO1B3 in BLCA cells and normal bladder cells. (D, E) The 
knockdown efficiency of SLCO1B3 was confirmed by qRT–PCR and western blotting. (F, G) CCK-8 and EdU assay for the proliferation ability. 
(H) Wound healing assay for the migration ability. (I) Transwell assay for the invasion ability. *P < 0.05, **P < 0.01. 
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responses than did those in the high-risk group. 
However, our results contradicted the findings for 
disulfidptosis in liver cancer, indicating that increased 
CD8+ T cells lead to worse prognosis [37]. This can be 
explained as follows: infiltration of CD8+ T cells may 
trigger mutations in cancer cells, thereby enhancing 
their immune escape ability. The expression levels of 
some genes were utilized to develop a risk score, which 
effectively differentiated disulfidptosis Clusters A and 
B, as well as their gene Clusters A and B. The 
disulfidptosis score showed good prediction 
performance across multiple cohorts, and this finding 
was validated in test cohorts. 
 
Then, we identified two hub genes in the prognostic 
signature. Among the ten genes, DUSP2 and SLCO1B3 
were found to be potential therapeutic targets because 
they were differentially expressed in BLCA and their 
expression levels were associated with patient 
prognosis. DUSP2 is a member of the nuclear type I 
DUSP family that may activate MAPKs, thereby 
preventing tumor progression [38]. Studies have 
demonstrated that DUSP2 is an important kinase 
in tumors. Moreover, it was reported that DUSP2 is 
downregulated in BLCA tissues, which is associated 
with poor prognosis in BLCA patients [39]. However, 
the biological role of DUSP2 in BLCA remains to be 
characterized. Through in vitro assays, this study 
explored the expression and biological role of DUSP2 
in BLCA for the first time. DUSP2 was downregulated 
in BLCA cells and acted as a tumor-suppressor gene. It 
inhibited the proliferation, migration, and invasion of 
BLCA cells. Solute carrier organic anion transporter 

family member 1B3 (SLCO1B3) is a membrane-bound 
multispecific transporter found in hepatocytes. It 
transports several endogenous and exogenous 
compounds. SLCO1B3 contributes to the development 
of several cancers and regulates tumor sensitivity to 
chemotherapy [40, 41]. Nonetheless, its expression and 
biological function in BLCA have never been reported. 
Our results indicate that SLCO1B3 was upregulated in 
BLCA cells and acted as an oncogene. It also enhanced 
the proliferation, migration, and invasion of BLCA 
cells. 
 
Although our prognostic signature related to 
disulfidptosis showed good performance, there are still 
some shortcomings. First, the use of data obtained from 
public databases might introduce biases. More 
prospective trials are needed to validate the findings in 
real-world studies. Additional in vitro/in vivo 
mechanistic experiments should also be conducted to 
expand our results. In the future, we will identify 
appropriate solutions to address these problems. 
 
In summary, this study expands our understanding of 
DGRs and their role in BLCA. Moreover, we developed 
a prognostic tool comprising clinical parameters and 
risk assessments for predicting the prognosis and 
immunotherapy response of BLCA patients. We also 
identified two key DEGs and validated their expression 
and biological roles in BLCA, providing new targets for 
treating BLCA. The developed predictive signature may 
serve as a promising strategy for BLCA treatment. 
 
The Graphical Abstract is shown in Figure 12. 

 

 
 

Figure 12. Graphical Abstract. 

5767



www.aging-us.com 18 AGING 

AUTHOR CONTRIBUTIONS 
 
Hao Deng wrote this manuscript, designed and 
performed the experiments. Fan Cheng and Shaoping 
Cheng reviewed and modified this manuscript. The final 
text was reviewed and approved by all writers. 
 
CONFLICTS OF INTEREST 
 
The authors declare no conflicts of interest related to 
this study. 
 
FUNDING 
 
This research was funded by National Natural Science 
Foundation of China (82170775) from Dr. Fan Cheng. 
 
REFERENCES 
 
1. Dong W, Bi J, Liu H, Yan D, He Q, Zhou Q, Wang Q, Xie 

R, Su Y, Yang M, Lin T, Huang J. Circular RNA ACVR2A 
suppresses bladder cancer cells proliferation and 
metastasis through miR-626/EYA4 axis. Mol Cancer. 
2019; 18:95. 
https://doi.org/10.1186/s12943-019-1025-z 
PMID:31101108 

2. Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, 
Zhang S, Li N, Chen W. Cancer statistics in China and 
United States, 2022: profiles, trends, and 
determinants. Chin Med J (Engl). 2022; 135:584–90. 
https://doi.org/10.1097/CM9.0000000000002108 
PMID:35143424 

3. de Jong JJ, Liu Y, Robertson AG, Seiler R, Groeneveld 
CS, van der Heijden MS, Wright JL, Douglas J, Dall'Era 
M, Crabb SJ, van Rhijn BWG, van Kessel KEM, 
Davicioni E, et al. Long non-coding RNAs identify a 
subset of luminal muscle-invasive bladder cancer 
patients with favorable prognosis. Genome Med. 
2019; 11:60. 
https://doi.org/10.1186/s13073-019-0669-z 
PMID:31619281 

4. Babjuk M, Burger M, Capoun O, Cohen D, Compérat 
EM, Dominguez Escrig JL, Gontero P, Liedberg F, 
Masson-Lecomte A, Mostafid AH, Palou J, van Rhijn 
BWG, Rouprêt M, et al. European Association of 
Urology Guidelines on Non-muscle-invasive Bladder 
Cancer (Ta, T1, and Carcinoma in Situ). Eur Urol. 
2022; 81:75–94. 
https://doi.org/10.1016/j.eururo.2021.08.010 
PMID:34511303 

5. Witjes JA, Bruins HM, Cathomas R, Compérat EM, 
Cowan NC, Gakis G, Hernández V, Linares Espinós E, 
Lorch A, Neuzillet Y, Rouanne M, Thalmann GN, 
Veskimäe E, et al. European Association of Urology 

Guidelines on Muscle-invasive and Metastatic 
Bladder Cancer: Summary of the 2020 Guidelines. Eur 
Urol. 2021; 79:82–104. 
https://doi.org/10.1016/j.eururo.2020.03.055 
PMID:32360052 

 6. Schulz GB, Black PC. Combination therapies involving 
checkpoint-inhibitors for treatment of urothelial 
carcinoma: a narrative review. Transl Androl Urol. 
2021; 10:4014–21. 
https://doi.org/10.21037/tau-20-1177 
PMID:34804844 

 7. Buttigliero C, Tucci M, Vignani F, Scagliotti GV, Di 
Maio M. Molecular biomarkers to predict response to 
neoadjuvant chemotherapy for bladder cancer. 
Cancer Treat Rev. 2017; 54:1–9. 
https://doi.org/10.1016/j.ctrv.2017.01.002 
PMID:28135623 

 8. Koppula P, Zhang Y, Zhuang L, Gan B. Amino acid 
transporter SLC7A11/xCT at the crossroads of regulating 
redox homeostasis and nutrient dependency of cancer. 
Cancer Commun (Lond). 2018; 38:12. 
https://doi.org/10.1186/s40880-018-0288-x 
PMID:29764521 

 9. Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, 
Olszewski K, Horbath A, Chen X, Lei G, Mao C, Wu S, 
Zhuang L, et al. Actin cytoskeleton vulnerability to 
disulfide stress mediates disulfidptosis. Nat Cell Biol. 
2023; 25:404–14. 
https://doi.org/10.1038/s41556-023-01091-2 
PMID:36747082 

10. Lay AJ, Jiang XM, Kisker O, Flynn E, Underwood A, 
Condron R, Hogg PJ. Phosphoglycerate kinase acts in 
tumour angiogenesis as a disulphide reductase. 
Nature. 2000; 408:869–73. 
https://doi.org/10.1038/35048596 
PMID:11130727 

11. Tang SJ, Ho MY, Cho HC, Lin YC, Sun GH, Chi KH, Wang 
YS, Jhou RS, Yang W, Sun KH. Phosphoglycerate 
kinase 1-overexpressing lung cancer cells reduce 
cyclooxygenase 2 expression and promote anti-tumor 
immunity in vivo. Int J Cancer. 2008; 123:2840–8. 
https://doi.org/10.1002/ijc.23888 
PMID:18814280 

12. Wang Y, Jiang Y, Wei D, Singh P, Yu Y, Lee T, Zhang L, 
Mandl HK, Piotrowski-Daspit AS, Chen X, Li F, Li X, 
Cheng Y, et al. Nanoparticle-mediated convection-
enhanced delivery of a DNA intercalator to gliomas 
circumvents temozolomide resistance. Nat Biomed 
Eng. 2021; 5:1048–58. 
https://doi.org/10.1038/s41551-021-00728-7 
PMID:34045730 

13. Liao WS, Ho Y, Lin YW, Naveen Raj E, Liu KK, Chen C, 
Zhou XZ, Lu KP, Chao JI. Targeting EGFR of  

5768

https://doi.org/10.1186/s12943-019-1025-z
https://pubmed.ncbi.nlm.nih.gov/31101108
https://doi.org/10.1097/CM9.0000000000002108
https://pubmed.ncbi.nlm.nih.gov/35143424
https://doi.org/10.1186/s13073-019-0669-z
https://pubmed.ncbi.nlm.nih.gov/31619281
https://doi.org/10.1016/j.eururo.2021.08.010
https://pubmed.ncbi.nlm.nih.gov/34511303
https://doi.org/10.1016/j.eururo.2020.03.055
https://pubmed.ncbi.nlm.nih.gov/32360052
https://doi.org/10.21037/tau-20-1177
https://pubmed.ncbi.nlm.nih.gov/34804844
https://doi.org/10.1016/j.ctrv.2017.01.002
https://pubmed.ncbi.nlm.nih.gov/28135623
https://doi.org/10.1186/s40880-018-0288-x
https://pubmed.ncbi.nlm.nih.gov/29764521
https://doi.org/10.1038/s41556-023-01091-2
https://pubmed.ncbi.nlm.nih.gov/36747082
https://doi.org/10.1038/35048596
https://pubmed.ncbi.nlm.nih.gov/11130727
https://doi.org/10.1002/ijc.23888
https://pubmed.ncbi.nlm.nih.gov/18814280
https://doi.org/10.1038/s41551-021-00728-7
https://pubmed.ncbi.nlm.nih.gov/34045730


www.aging-us.com 19 AGING 

triple-negative breast cancer enhances the 
therapeutic efficacy of paclitaxel- and cetuximab-
conjugated nanodiamond nanocomposite. Acta 
Biomater. 2019; 86:395–405. 
https://doi.org/10.1016/j.actbio.2019.01.025 
PMID:30660004 

14. Ren C, Wang Q, Xu Z, Pan Y, Li Y, Liu X. Development 
and validation of a disulfidptosis and M2 TAM-related 
classifier for bladder cancer to explore tumor 
subtypes, immune landscape and drug treatment. J 
Cancer Res Clin Oncol. 2023; 149:15805–18. 
https://doi.org/10.1007/s00432-023-05352-3 
PMID:37668798 

15. Zhang Y, Jenkins DF, Manimaran S, Johnson WE. 
Alternative empirical Bayes models for adjusting for 
batch effects in genomic studies. BMC Bioinformatics. 
2018; 19:262. 
https://doi.org/10.1186/s12859-018-2263-6 
PMID:30001694 

16. Lai H, Cheng X, Liu Q, Luo W, Liu M, Zhang M, Miao J, 
Ji Z, Lin GN, Song W, Zhang L, Bo J, Yang G, et al. 
Single-cell RNA sequencing reveals the epithelial cell 
heterogeneity and invasive subpopulation in human 
bladder cancer. Int J Cancer. 2021; 149:2099–115. 
https://doi.org/10.1002/ijc.33794 
PMID:34480339 

17. Liu C, Fang J, Kang W, Yang Y, Yu C, Chen H, Zhang Y, 
Ouyang H. Identification of novel potential 
homologous repair deficiency-associated genes in 
pancreatic adenocarcinoma via WGCNA coexpression 
network analysis and machine learning. Cell Cycle. 
2023; 22:2392–408. 
https://doi.org/10.1080/15384101.2023.2293594 
PMID:38124367 

18. Esnaola M, Puig P, Gonzalez D, Castelo R, Gonzalez JR. 
A flexible count data model to fit the wide diversity of 
expression profiles arising from extensively replicated 
RNA-seq experiments. BMC Bioinformatics. 2013; 
14:254. 
https://doi.org/10.1186/1471-2105-14-254 
PMID:23965047 

19. Charoentong P, Finotello F, Angelova M, Mayer C, 
Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-
cancer Immunogenomic Analyses Reveal Genotype-
Immunophenotype Relationships and Predictors of 
Response to Checkpoint Blockade. Cell Rep. 2017; 
18:248–62. 
https://doi.org/10.1016/j.celrep.2016.12.019 
PMID:28052254 

20. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, 
Smyth GK. limma powers differential expression 
analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015; 43:e47. 

https://doi.org/10.1093/nar/gkv007 
PMID:25605792 

21. Qin Y, Yan G, Qiao Y, Wang D, Tang C. Identification of 
hub genes based on integrated analysis of single-cell 
and microarray transcriptome in patients with 
pulmonary arterial hypertension. BMC Genomics. 
2023; 24:788. 
https://doi.org/10.1186/s12864-023-09892-3 
PMID:38110868 

22. Wang L, Li X, Zhang L, Gao Q. Improved anticancer 
drug response prediction in cell lines using matrix 
factorization with similarity regularization. BMC 
Cancer. 2017; 17:513. 
https://doi.org/10.1186/s12885-017-3500-5 
PMID:28768489 

23. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, 
Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, 
Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, et al. 
TGFβ attenuates tumour response to PD-L1 blockade 
by contributing to exclusion of T cells. Nature. 2018; 
554:544–8. 
https://doi.org/10.1038/nature25501 
PMID:29443960 

24. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a 
Bioconductor package for differential expression 
analysis of digital gene expression data. 
Bioinformatics. 2010; 26:139–40. 
https://doi.org/10.1093/bioinformatics/btp616 
PMID:19910308 

25. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. 
Maftools: efficient and comprehensive analysis of 
somatic variants in cancer. Genome Res. 2018; 
28:1747–56. 
https://doi.org/10.1101/gr.239244.118 
PMID:30341162 

26. Zhang H, Meltzer P, Davis S. RCircos: an R package for 
Circos 2D track plots. BMC Bioinformatics. 2013; 14:244. 
https://doi.org/10.1186/1471-2105-14-244 
PMID:23937229 

27. Usuba W, Urabe F, Yamamoto Y, Matsuzaki J, Sasaki 
H, Ichikawa M, Takizawa S, Aoki Y, Niida S, Kato K, 
Egawa S, Chikaraishi T, Fujimoto H, Ochiya T. 
Circulating miRNA panels for specific and early 
detection in bladder cancer. Cancer Sci. 2019; 
110:408–19. 
https://doi.org/10.1111/cas.13856 
PMID:30382619 

28. Duan L, Liu X, Luo Z, Zhang C, Wu C, Mu W, Zuo Z, 
Pei X, Shao T. G-Protein Subunit Gamma 4 as a 
Potential Biomarker for Predicting the Response of 
Chemotherapy and Immunotherapy in Bladder 
Cancer. Genes (Basel). 2022; 13:693. 

5769

https://doi.org/10.1016/j.actbio.2019.01.025
https://pubmed.ncbi.nlm.nih.gov/30660004
https://doi.org/10.1007/s00432-023-05352-3
https://pubmed.ncbi.nlm.nih.gov/37668798
https://doi.org/10.1186/s12859-018-2263-6
https://pubmed.ncbi.nlm.nih.gov/30001694
https://doi.org/10.1002/ijc.33794
https://pubmed.ncbi.nlm.nih.gov/34480339
https://doi.org/10.1080/15384101.2023.2293594
https://pubmed.ncbi.nlm.nih.gov/38124367
https://doi.org/10.1186/1471-2105-14-254
https://pubmed.ncbi.nlm.nih.gov/23965047
https://doi.org/10.1016/j.celrep.2016.12.019
https://pubmed.ncbi.nlm.nih.gov/28052254
https://doi.org/10.1093/nar/gkv007
https://pubmed.ncbi.nlm.nih.gov/25605792
https://doi.org/10.1186/s12864-023-09892-3
https://pubmed.ncbi.nlm.nih.gov/38110868
https://doi.org/10.1186/s12885-017-3500-5
https://pubmed.ncbi.nlm.nih.gov/28768489
https://doi.org/10.1038/nature25501
https://pubmed.ncbi.nlm.nih.gov/29443960
https://doi.org/10.1093/bioinformatics/btp616
https://pubmed.ncbi.nlm.nih.gov/19910308
https://doi.org/10.1101/gr.239244.118
https://pubmed.ncbi.nlm.nih.gov/30341162
https://doi.org/10.1186/1471-2105-14-244
https://pubmed.ncbi.nlm.nih.gov/23937229
https://doi.org/10.1111/cas.13856
https://pubmed.ncbi.nlm.nih.gov/30382619


www.aging-us.com 20 AGING 

https://doi.org/10.3390/genes13040693 
PMID:35456499 

29. Min HY, Lee HY. Oncogene-Driven Metabolic 
Alterations in Cancer. Biomol Ther (Seoul). 2018; 
26:45–56. 
https://doi.org/10.4062/biomolther.2017.211 
PMID:29212306 

30. Iyamu EW. The redox state of the 
glutathione/glutathione disulfide couple mediates 
intracellular arginase activation in HCT-116 colon 
cancer cells. Dig Dis Sci. 2010; 55:2520–8. 
https://doi.org/10.1007/s10620-009-1064-1 
PMID:19997976 

31. Kobayashi K, Matsuyama H, Shimizu K, Fujii N, Inoue 
R, Yamamoto Y, Matsumoto H, Nagao K. Clinical 
significance of a second-line chemotherapy regimen 
with paclitaxel, ifosfamide and nedaplatin for 
metastatic urothelial carcinoma after failure of 
cisplatin-based chemotherapy. Jpn J Clin Oncol. 2016; 
46:775–80. 
https://doi.org/10.1093/jjco/hyw071 
PMID:27272172 

32. Hu G, Yao H, Wei Z, Li L, Yu Z, Li J, Luo X, Guo Z. A 
bioinformatics approach to identify a disulfidptosis-
related gene signature for prognostic implication in 
colon adenocarcinoma. Sci Rep. 2023; 13:12403. 
https://doi.org/10.1038/s41598-023-39563-y 
PMID:37524774 

33. Huang J, Zhang J, Zhang F, Lu S, Guo S, Shi R, Zhai Y, 
Gao Y, Tao X, Jin Z, You L, Wu J. Identification of a 
disulfidptosis-related genes signature for prognostic 
implication in lung adenocarcinoma. Comput Biol 
Med. 2023; 165:107402. 
https://doi.org/10.1016/j.compbiomed.2023.107402 
PMID:37657358 

34. Xue W, Qiu K, Dong B, Guo D, Fu J, Zhu C,  
Niu Z. Disulfidptosis-associated long non-coding  
RNA signature predicts the prognosis, tumor 
microenvironment, and immunotherapy and 
chemotherapy options in colon adenocarcinoma. 
Cancer Cell Int. 2023; 23:218. 
https://doi.org/10.1186/s12935-023-03065-8 
PMID:37759294 

35. Zhu G, Pei L, Li Y, Gou X. EP300 mutation is associated 
with tumor mutation burden and promotes 
antitumor immunity in bladder cancer patients. Aging 
(Albany NY). 2020; 12:2132–41. 
https://doi.org/10.18632/aging.102728 
PMID:32012118 

36. van der Leun AM, Thommen DS, Schumacher TN. 
CD8+ T cell states in human cancer: insights from 
single-cell analysis. Nat Rev Cancer. 2020; 20:218–32. 
https://doi.org/10.1038/s41568-019-0235-4 
PMID:32024970 

37. Wang T, Guo K, Zhang D, Wang H, Yin J, Cui H, Wu W. 
Disulfidptosis classification of hepatocellular 
carcinoma reveals correlation with clinical prognosis 
and immune profile. Int Immunopharmacol. 2023; 
120:110368. 
https://doi.org/10.1016/j.intimp.2023.110368 
PMID:37247499 

38. Wang CA, Chang IH, Hou PC, Tai YJ, Li WN, Hsu PL, Wu 
SR, Chiu WT, Li CF, Shan YS, Tsai SJ. DUSP2 regulates 
extracellular vesicle-VEGF-C secretion and pancreatic 
cancer early dissemination. J Extracell Vesicles. 2020; 
9:1746529. 
https://doi.org/10.1080/20013078.2020.1746529 
PMID:32341770 

39. Yin H, He W, Li Y, Xu N, Zhu X, Lin Y, Gou X. Loss of 
DUSP2 predicts a poor prognosis in patients with 
bladder cancer. Hum Pathol. 2019; 85:152–61. 
https://doi.org/10.1016/j.humpath.2018.11.007 
PMID:30458195 

40. Sun R, Ying Y, Tang Z, Liu T, Shi F, Li H, Guo T, Huang S, 
Lai R. The Emerging Role of the SLCO1B3 Protein in 
Cancer Resistance. Protein Pept Lett. 2020; 27:17–29. 
https://doi.org/10.2174/09298665266661909261542
48 
PMID:31556849 

41. Zhi L, Zhao L, Zhang X, Liu W, Gao B, Wang F, Wang X, 
Wang G. SLCO1B3 promotes colorectal cancer 
tumorigenesis and metastasis through STAT3. Aging 
(Albany NY). 2021; 13:22164–75. 
https://doi.org/10.18632/aging.203502 
PMID:34526411 

 

5770

https://doi.org/10.3390/genes13040693
https://pubmed.ncbi.nlm.nih.gov/35456499
https://doi.org/10.4062/biomolther.2017.211
https://pubmed.ncbi.nlm.nih.gov/29212306
https://doi.org/10.1007/s10620-009-1064-1
https://pubmed.ncbi.nlm.nih.gov/19997976
https://doi.org/10.1093/jjco/hyw071
https://pubmed.ncbi.nlm.nih.gov/27272172
https://doi.org/10.1038/s41598-023-39563-y
https://pubmed.ncbi.nlm.nih.gov/37524774
https://doi.org/10.1016/j.compbiomed.2023.107402
https://pubmed.ncbi.nlm.nih.gov/37657358
https://doi.org/10.1186/s12935-023-03065-8
https://pubmed.ncbi.nlm.nih.gov/37759294
https://doi.org/10.18632/aging.102728
https://pubmed.ncbi.nlm.nih.gov/32012118
https://doi.org/10.1038/s41568-019-0235-4
https://pubmed.ncbi.nlm.nih.gov/32024970
https://doi.org/10.1016/j.intimp.2023.110368
https://pubmed.ncbi.nlm.nih.gov/37247499
https://doi.org/10.1080/20013078.2020.1746529
https://pubmed.ncbi.nlm.nih.gov/32341770
https://doi.org/10.1016/j.humpath.2018.11.007
https://pubmed.ncbi.nlm.nih.gov/30458195
https://doi.org/10.2174/0929866526666190926154248
https://doi.org/10.2174/0929866526666190926154248
https://pubmed.ncbi.nlm.nih.gov/31556849
https://doi.org/10.18632/aging.203502
https://pubmed.ncbi.nlm.nih.gov/34526411


www.aging-us.com 21 AGING 

SUPPLEMENTARY MATERIALS 
 
Supplementary Figure 
 

 
 

Supplementary Figure 1. Single-cell RNA sequencing analysis of DUSP2 and SCL1BO3. The analysis was performed on TISCH 
database. *P < 0.05, **P < 0.01. 
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