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ABSTRACT 
 

Background: CESC is the second most commonly diagnosed gynecological malignancy. Given the pivotal 
involvement of metabolism-related genes (MRGs) in the etiology of multiple tumors, our investigation aims to 
devise a prognostic risk signature rooted in cancer stemness and metabolism. 
Methods: The stemness index based on mRNA expression (mRNAsi) of samples from the TCGA dataset was 
computed using the One-class logistic regression (OCLR) algorithm. Furthermore, potential metabolism-related 
genes related to mRNAsi were identified through weighted gene co-expression network analysis (WGCNA). We 
construct a stemness-related metabolic gene signature through shrinkage estimation and univariate analysis, 
thereby calculating the corresponding risk scores. Moreover, we selected corresponding DEGs between groups 
with high- and low-risk score and conducted routine bioinformatic analyses. Furthermore, we validated the 
expression of four hub genes at the protein level through immunohistochemistry (IHC) in samples obtained 
from our patient cohort. 
Results: According to the findings, it was found that six genes—AKR1B10, GNA15, ALDH1B1, PLOD2, LPCAT1, 
and GPX8— were differentially expressed in both TCGA-CSEC and GEO datasets among 23 differentially 
expressed metabolism-related genes (DEMRGs). mRNAsi exhibited a notable association with the extent of key 
oncogene mutation. The results showed that the AUC values for forecasting survival at 1, 3, and 5 years are 
0.715, 0.689, and 0.748, individually. We observed a notable association between the risk score and different 
immune cell populations, along with enrichment in crucial signaling pathways in CESC. Four genes differentially 
expressed between different risk score groups were validated by IHC to be highly expressed in the CESC 
samples at the protein level. 
Conclusion: The current investigation indicated that a 3-gene signature based on stemness-related metabolic 
and 4 hub genes with differential expression between high and low-risk score subgroups may serve as valuable 
prognostic markers and potential therapeutic targets in CESC. 

www.aging-us.com AGING 2024, Vol. 16, No. 8

7293

https://www.aging-us.com


www.aging-us.com 2 AGING 

INTRODUCTION 
 

According to the 2020 Global Cancer Statistics, CESC 

is the second most commonly diagnosed gynecological 

malignancy and the leading cause of death among 

women [1]. However, many developing countries lack 

vaccination and screening programs, which increases 

the difficulty of diagnosis and treatment [2, 3]. Each 

year, approximately 604,000 new cases of CESC are 

diagnosed, with 342,000 resulting in mortality [1]. In 

most cases, patients are often diagnosed at the moderate 

or advanced stages of the disease. While current 

treatment strategies, such as surgery, radiotherapy, and 

chemotherapy, are promising for CESC patients, about 

75% of patients would experience disease progression 

and/or recurrence [4]. Therefore, there is an imperative 

need to investigate the carcinogenic mechanisms 

underlying CESC and develop a novel prognostic model 

for this malignancy. 

 

Cancer stem cells (CSCs) have become attractive 

targets for cancer treatment due to their capacity for 

self-renewal and multi-lineage differentiation, which 

contribute to tumor growth and heterogeneity. CSCs are 

more aggressive than normal cancer cells, thereby 

promoting tumor invasion and metastasis [5]. In recent 

years, a new cancer stemness index (mRNAsi) 

generated by deep learning method has gained

 

 
 

Figure 1. Overall experimental flow chart. 
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significant attention in diverse cancers [6], including 

hepatocellular carcinoma [7, 8], renal cell carcinoma [8], 

lung cancer [9], and glioma [10]. Furthermore, metabolic 

reprogramming has emerged as a novel fundamental 

characteristic of cancer cells in recent years [11]. 

Increased glycolysis under normoxic conditions (known 

as the Warburg effect) and alterations in glutamine 

metabolism represent prominent metabolic adaptations 

in tumor cells. Emerging data suggest that aberrant 

metabolism is correlated with unfavorable clinical 

outcomes across various tumor types, including cervical 

carcinoma [12]. Nevertheless, the precise involvement 

and mechanisms underlying the interplay between 

stemness and metabolism in the progression and 

prognosis of CESC remain inadequately elucidated. 

Furthermore, there is a lack of prognostic models 

utilizing stemness- and metabolism-related genes to 

predict outcomes in CESC patients. 

 

This study intended to establish a prognostic model of 

differentially expressed metabolism-associated genes 

(DEGs) linked to stem cell properties, utilizing mRNAsi 

as a basis in CESC. All samples were categorized into 

high- and low-mRNAsi score subgroups based on 

mRNAsi score. Then we utilized WGCNA [13] to explore 

cancer stemness characteristics and find out mRNAsi 

score-related DEGs. We constructed a new prognostic 

gene signature for CESC, integrating cancer stemness and 

metabolism, through comprehensive univariate and 

multivariate Cox regression analyses. Subsequently, we 

validated the expression of these signature genes using 

external GEO datasets. Additionally, we extensively 

explored the interplay among cancer stemness, immune 

microenvironment, and gene expression differences while 

conducting survival analyses stratified by risk scores. Our 

findings shed light on the associations between mRNAsi, 

immune cell infiltration, and prognostic implications. We 

further identified eight hub DEGs distinguishing high- 

from low-risk score groups. Among these genes, four hub 

genes were further validated through IHC analysis using 

patient samples. A schematic overview of the 

experimental workflow was depicted (Figure 1), 

illustrating the feasibility of our approach for application 

in other cancer research endeavours. Our work could 

provide insights for the potential mechanism of CESC and 

stemness-related metabolic targets while also offering 

targets for precise immunotherapy targeting stemness-

related metabolic pathways. 

 

RESULTS 
 

Data pre-processing and screening of metabolic 

genes related to mRNAsi- (MRGS) 

 

Firstly, the gene expression matrix of TCGA-CESC was 

transformed into TPM data, and the mRNAsi value of 

each sample was obtained using the GSVA method. 

CESC samples were sorted based on their mRNAsi 

scores, ranging from low to high stemness index, and 

subsequently examined for potential association with 

demographic, molecular, or clinical characteristics 

(Figure 2A). Survival analysis identified a notable 

impact of mRNAsi on the overall survival (OS) of 

CESC (P < 0.001) (Figure 2B). According to the level 

of mRNAsi, DEGs were selected from TCGA-CESC 

gene dataset through Deseq2 package in the R software, 

as shown in the volcano map and heatmap (Figure 2C, 

2D). At the same time, we built a WGCNA co-

expression network in order to determine the gene 

modules with biological significance and further 

identify the genes proximately related to the stemness of 

CESC cells (mRNAsi). A total of 22 modules were 

acquired for the following analysis. Module 

significance (MS) was computed to determine the 

relationship between mRNAsi score and genes (Figure 

2E). Since an R2 value close to 1 indicated a strong 

connection between GC dryness and gene expression. 

As shown in Figure 2F, we screened two modules 

exhibiting the most robust correlation and considered 

that they have a strong correlation with CESC dryness, 

namely the green module and the darkorange2 module. 

The green module (R2 = 0.34, P < 0.001) and 

darkorange2 module was positively correlated with 

mRNAsi (R2 = 0.49, P < 0.001). The genes in the two 

modules were overlapped with the previously identified 

DEGs and known metabolism-related genes (MRGS), 

visualized using Wayne diagram (Figure 2G, 2H). 13 

and 10 candidate genes were obtained for subsequent 

analysis, respectively. 

 

Validation of mRNAsi-related metabolic genes in the 

GEO dataset 

 

We extracted the genes expression matrix from the two 

modules by R software, and the differential expression 

profile of these 23 candidate genes between high- and 

low-mRNAsi groups from both TCGA-CESC and 

GSE44001 datasets were illustrated in a heatmap 

(Figure 3A, 3B). The correlation heatmap was used to 

show the correlation among these 23 candidate genes 

expression (Figure 3C, 3D). Then, the differential 

expression of the 23 candidate genes in the two datasets 

were further shown by grouped box chart, and it was 

found that AKR1B10, GNA15, ALDH1B1, PLOD2, 

LPCAT1, and GPX8 genes exhibited differential 

expression in the two datasets. (Figure 3E, 3F). 

 

Then, the gene expression matrix of TCGA-CESC was 

clustered by NMF consistent clustering (Figure 3G). 
According to the mean expression level of the chosen 

candidate genes in each sample, the samples were 

divided into two subgroups (cluster1 and cluster2). The 
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sample differentiation of the two subgroups were 

displayed by PCA analysis. The distribution of 23 

candidate genes in the two subgroups were displayed by 

heatmap (Figure 3H, 3I). Finally, to investigate the 

mutation characteristics of distinct subgroups, we 

examined the mutant genes between the two subgroups 

 

 

Figure 2. Screening of candidate genes based on TCGA-CESC. (A) Overview of the association between known clinical and molecular 

features and mRNAsi in CESC. The list shows the samples sorted by mRNAsi from low to high. Rows represent known clinical and molecular 
characteristics. (B) The K-M plot showed the OS of CESC patients with high or low mRNAsi. (C) The heat map of differentially expressed 
genes grouped according to the level of mRNAsi. (D) The volcano map of differentially expressed genes grouped according to the level of 
mRNAsi. (E) Different modules obtained by WGCNA clustering. (F) Cluster Heatmap showed the correlation and significant difference 
between gene module and mRNAsi score. The p-value is shown in parentheses. (G, H). Venn diagram of the intersection of genes in green 
and darkorange2 modules with metabolism-related genes (MRGS) and differentially expressed genes, respectively. 
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as illustrated by the mutation waterfall diagram. We 

found that the significant mutant genes between the two 

subgroups were TTN, PIK3CA, KMT2C, MUC16 

(Figure 3J). 
 

Development of a prognostic model utilizing the 

candidate genes 
 

Here in the TCGA-CESC assembly, a univariate Cox 

proportional regression model screened out eight genes 

associated with OS (p < 0.1) (Figure 4A). Next, the 

Lasso Cox regression model was used to screen 

prognostic markers. A standard error (SE) higher than the 

minimum standard was selected to obtain a model 

containing five genes (Figure 4B, 4C). In order to 

optimize the model and include the most prognostically 

relevant genes, we employed a stepwise Cox 

proportional hazards regression model. This approach 

led to the identification of the final three genes, with 

special emphasis on PLOD2 as an independent 

prognostic gene (Figure 4D). The distribution of risk 

score, survival status, and gene expression profiles were 

illustrated (Figure 4E). Then, the patients were stratified 

into the high-score group and low-score group based on 

the optimized risk score. Kaplan Meier survival analysis 

revealed a notable higher survival rate in the high-score 

 

 
 

Figure 3. Validation of screened gene set in TCGA-CESC dataset. (A, B) Differential heat map of candidate gene set in TCGA-CESC 

dataset and GSE44001. (C, D) The correlation heat map of candidate genes in TCGA-CESC and GSE44001. The non-statistically significant 
mutual modules are displayed in blank. (E, F) Differential expression of candidate genes in TCGA-CESC and GSE44001. (G) NMF consistent 
clustering of screened gene sets in TCGA-CESC. (H) PCA analysis of two subgroups. (I) Heat map of candidate gene expression between the 
two subgroups. (J) The mutation landscape waterfall plot between two subgroups of TCGA-CESC. 
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group compared to the low-score group (Figure 4F,  

P = 0.006). Our findings demonstrated AUC values of 

0.715, 0.689, and 0.748 for predicting survival at 1, 3, 

and 5 years, respectively (Figure 4G), suggesting a 

robust predictive efficacy of this model. 

DEGs selection and functional enrichment analysis 

utilizing risk score grouping 

 

We divided the samples according to the above risk 

score, then extracted corresponding DEGs between the 

 

 
 

Figure 4. Identification of prognosis-related genes. (A) Univariate Cox analysis was used to double-screen the prognosis-related 

genes in the screened gene set. (B) Parameter selection in lasso model is 100 times cross validation. (C) Lasso coefficient spectrum of 
prognostic gene screening. (D) Stepwise Cox proportional hazards regression model was used to further screen the prognosis-related 
genes. (E) Risk score distribution, survival status, and gene expression profile. (F, G) K-M survival plot and ROC analysis for predicting 1-
year, 3-year and 5-year prognosis. 
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high- and low-risk score groups, as illustrated using the 

volcano map and heatmap (Figure 5A, 5B). Then, the 

DEGs were analyzed by pathway enrichment and GO 

enrichment, respectively. Enriched cell component (CC) 

included the extracellular region, extracellular space, 

integral component of plasma membrane, and 

chylomicron (Figure 5C). The pathway enrichment 

analysis suggested notable enrichment of genes in 

pathways related to retinol metabolism, neuroactive live 

receptor interaction, maturity onset diabetes of the young, 

metabolism of xenobiology by cytochrome P450, and 

chemical carcinogenesis pathways (Figure 5D). Eight 

hub genes were screened by semantic similarity analysis 

between GO terms (Friends analysis) (Figure 5E).

 

 
 

Figure 5. Functional enrichment of DEGs in TCGA-CESC cohort. The correlation between the expression levels of candidate genes. 
(A, B) The heat map and volcano map for screened DEGs by risk score grouping. (C) Significant enrichment results of GO function. 
(D) Significantly enriched KEGG pathway. (E) Semantic similarity of GO terms of eight core genes by FRIENDS analysis. (F) The correlation 
between CLCA4 and mRNAsi was statistically significant. 
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Table 1. GO analysis of DEGs. 

GO ID Description p.adjust 

GO:0005576 Extracellular region 5.50E-13 

GO:0044421 Extracellular region part 2.15E-10 

GO:0005615 Extracellular space 4.71E-10 

GO:0031012 Extracellular matrix 1.20E-04 

GO:0005887 Integral component of plasma membrane 1.20E-04 

GO:0031226 Intrinsic component of plasma membrane 1.89E-04 

GO:0042627 Chylomicron 3.62E-03 

GO:0034364 High-density lipoprotein particle 4.91E-03 

GO:0044459 Plasma membrane part 9.52E-03 

GO:0034366 Spherical high-density lipoprotein particle 9.58E-03 

GO:0034361 Very-low-density lipoprotein particle 1.05E-02 

GO:0034385 Triglyceride-rich plasma lipoprotein particle 1.05E-02 

GO:0034358 Plasma lipoprotein particle 1.05E-02 

GO:1990777 Lipoprotein particle 1.05E-02 

GO:0005903 Brush border 1.09E-02 

GO:0032994 Protein-lipid complex 1.32E-02 

GO:0008076 Voltage-gated potassium channel complex 1.58E-02 

GO:0098855 HCN channel complex 1.82E-02 

GO:0099699 Integral component of synaptic membrane 1.82E-02 

GO:0034705 Potassium channel complex 2.37E-02 

GO:0005796 Golgi lumen 2.54E-02 

GO:0098862 Cluster of actin-based cell projections 2.69E-02 

GO:0099240 Intrinsic component of synaptic membrane 2.80E-02 

GO:0072562 Blood microparticle 2.92E-02 

GO:0045177 Apical part of cell 2.94E-02 

GO:0016324 Apical plasma membrane 3.94E-02 

GO:0044306 Neuron projection terminus 4.06E-02 

GO:0030141 Secretory granule 4.48E-02 

GO:0099055 Integral component of postsynaptic membrane 4.48E-02 

GO:0031091 Platelet alpha granule 4.81E-02 

 

Especially, it was found that CLCA4 was negatively 

associated with mRNAsi score (P < 0.01, r = −0.44) 

(Figure 5F). The detailed GO and KEGG results were 

shown in Tables 1 and 2. 

 

GSEA analysis of metabolic-related pathways 

related to risk scores 

 

GSEA was conducted to compare pathway enrichment 

between the high-risk and low-risk groups in the 

TCGA-CESC dataset, utilizing the risk score to identify 

pathways of significant enrichment (P-value < 0.05). 

Additionally, 12 significant enrichment pathways were 

found to be related to metabolism, including reactome_ 

ABACAVIR_TRANSPORT_AND_METABOLISM; 

REACTOME_METABOLISM_OF_PORPHYRINS, 

REACTOME_REGULATION_OF_LIPID_METABO- 

LISM_BY_PPARalpha showed significant enrichment 

in the high-risk score group. REACTOME 

DISEASES_OF_METABOLISM, KEGG_METABO-

LISM_OF_XENOBIOTICS_BY_CYTOCHROME_P4

50; REACTOME_METABOLIC_DISORDERS_OF_ 

BIOLOGICAL_OXIDATION_ENZYMES; WP_ 

CODEINE_AND_MORPHINE_METABOLISM; WP_ 

GANGLIO_SPHINGOLIPID_Metabolism and others 

showed significant enrichment in the low-risk score 

group. (Figure 6A–6H). The detailed GSEA results 

were shown in Table 3. 

 

Variations in immune microenvironment between 

the high- and low-risk score groups 

 

The estimate method was used to determine tumor 

purity, matrix and immune score to study the correlation 
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Table 2. KEGG analysis of DEGs. 

ID ID Class P-value 

ko00830 Retinol metabolism Metabolism 1.90E-06 

ko04950 Maturity onset diabetes of the young Human Diseases 7.38E-06 

ko00980 Metabolism of xenobiotics by cytochrome P450 Metabolism 3.64E-05 

ko05204 Chemical carcinogenesis Human Diseases 9.78E-05 

ko00982 Drug metabolism - cytochrome P450 Metabolism 1.71E-04 

ko00040 Pentose and glucuronate interconversions Metabolism 2.82E-04 

ko04972 Pancreatic secretion Organismal Systems 3.92E-04 

ko03320 PPAR signaling pathway Organismal Systems 3.94E-04 

ko00140 Steroid hormone biosynthesis Metabolism 7.78E-04 

ko04610 Complement and coagulation cascades Organismal Systems 8.60E-04 

ko00053 Ascorbate and aldarate metabolism Metabolism 1.18E-03 

ko00790 Folate biosynthesis Metabolism 1.18E-03 

ko04725 Cholinergic synapse Organismal Systems 3.84E-03 

ko04911 Insulin secretion Organismal Systems 4.38E-03 

ko04974 Protein digestion and absorption Organismal Systems 5.98E-03 

ko00860 Porphyrin and chlorophyll metabolism Metabolism 6.37E-03 

ko04918 Thyroid hormone synthesis Organismal Systems 8.26E-03 

ko04973 Carbohydrate digestion and absorption Organismal Systems 9.99E-03 

ko00983 Drug metabolism - other enzymes Metabolism 1.14E-02 

ko04935 Growth hormone synthesis, secretion and action Organismal Systems 1.87E-02 

ko04970 Salivary secretion Organismal Systems 2.07E-02 

ko04923 Regulation of lipolysis in adipocyte Organismal Systems 2.18E-02 

ko04929 GnRH secretion Organismal Systems 2.67E-02 

ko00350 Tyrosine metabolism Metabolism 2.80E-02 

ko00730 Thiamine metabolism Metabolism 2.93E-02 

ko04713 Circadian entrainment Organismal Systems 2.94E-02 

ko04915 Estrogen signaling pathway Organismal Systems 3.26E-02 

ko04924 Renin secretion Organismal Systems 3.51E-02 

ko00360 Phenylalanine metabolism Metabolism 3.66E-02 

ko04922 Glucagon signaling pathway Organismal Systems 3.76E-02 

ko05218 Melanoma Human Diseases 3.98E-02 

ko04971 Gastric acid secretion Organismal Systems 4.15E-02 

 

between high- and low-risk groups. The two risk groups 

did not differ significantly (Figure 7A–7C). Then, we 

ranked the samples according to the risk score and 

displayed the infiltration of immune cells in each 

sample from the TCGA cohort using a histogram. The 

scores representing the infiltration of 22 immune cells 

computed using CIBERSORT algorithm are shown in 

Figure 7D, and the associations among immune cells 

are shown in Figure 7E. Additionally, after calculating 

the association between the eight hub genes and 

immune cell infiltration, we found out a notable 

correlation between the CLCA4 gene and a variety of 

immune cells (B memory cells, B naïve cells, resting 

dendritic cells, M1 macrophages, resting mast cells, and 

plasma cells), which may suggest that CLCA4 gene 

exhibits significant involvement in tumor immunity 

within CESC (Figure 7F). 

 

Histologic examination 

 

We next investigated the protein expression level of the 

hub genes, including GNA15, ALDH1B1, LPCAT1, 

and GPX8, in CESC tissues. The IHC staining results 

revealed that four genes displayed high-level 

expressions in 30 CESC specimens (Figure 8). In CESC 

patients, the rates of high expression of GNA15, 

ALDH1B1, LPCAT1, and GPX8 were 70%, 53.3%, 

50.0%, and 46.7%, respectively. The rates of low 

expression of GNA15, ALDH1B1, LPCAT1, and GPX8 

were 10.0%, 13.3%, 16.7%, and 13.3%, respectively. 
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Table 3. GSEA results. 

ID NES P-value Rank 

REACTOME_ABACAVIR_TRANSPORT_AND_METABOLISM 1.71  5.54E-03 2051 

REACTOME_METABOLISM_OF_PORPHYRINS 1.56  1.07E-02 32 

REACTOME_REGULATION_OF_LIPID_METABOLISM_BY_PPARALPHA 1.47  1.23E-02 322 

REACTOME_DISEASES_OF_METABOLISM −1.36  5.17E-03 2298 

KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 −1.47  3.59E-02 1465 

REACTOME_METABOLIC_DISORDERS_OF_BIOLOGICAL_OXIDATION_ 
ENZYMES 

−1.51  3.15E-02 2294 

WP_CODEINE_AND_MORPHINE_METABOLISM −1.54  3.25E-02 1048 

WP_GANGLIO_SPHINGOLIPID_METABOLISM −1.56  2.56E-02 121 

WP_DOPAMINE_METABOLISM −1.61  1.92E-02 563 

REACTOME_NICOTINATE_METABOLISM −1.67  1.36E-02 533 

KEGG_HISTIDINE_METABOLISM −1.78  2.26E-03 2054 

WP_GLUTATHIONE_METABOLISM −1.99  2.24E-03 3031 

 

 

 
 

Figure 6. Metabolic pathways of GSEA enrichment analysis related to risk score. (A–H) The detailed information of GSEA 

metabolic pathways. 
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DISCUSSION 
 

Recent studies have indicated a positive association 

between the presence of cancer stem cells (CSCs) and 

regulatory T cells (Treg) in cancer, suggesting that 

targeting the interaction between Treg and CSCs holds 

promise as a therapeutic strategy [14]. Furthermore, 

metabolic abnormalities have been linked to un-

favourable outcomes in various types of tumors, such as 

Hela. Hence, gaining deeper insights into personalized 

 

 
 

Figure 7. Immune microenvironment assessment based on risk score. (A–C) The difference in immune microenvironment score 

between different risk groups. (D) The histogram sorted according to the risk score showed the distribution of 22 immune infiltrating cells. 
(E) Correlation analysis of 22 kinds of immune cells. (F) Heat map of correlation between hub genes and 22 kinds of immune cell 
infiltrations; Red indicated positive correlation, blue indicated negative correlation, and the darker the color, the stronger the correlation. 
*P < 0.05, **P < 0.01, ***P < 0.001. 
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stemness and metabolism-related signatures alongside 

tumor immunology of CSCs could potentially offer 

highly effective therapeutic avenues within the 

framework of immunotherapy strategies [15]. 

 

In the current study, mRNAsi was calculated by OCLR 

method from both TCGA-CESC and one GEO dataset. 

Further investigation discovered a notable relation 

between mRNAsi and hub genes, as well as their 

mutation status and infiltration of stroma cells among 

CESC samples. Moreover, we investigated the 

underlying functional relevance of mRNAsi-related 

metabolism genes with the calculated gene modules 

using WGCNA. Subsequently, we employed shrinkage 

estimation and univariate analysis to identify the most 

significant metabolism-related genes for prognosis, 

forming the 3-stemness-related metabolic gene 

signature for CESC. Following this, samples from both 

the TCGA-CESC dataset and GSE44001 external 

dataset were integrated into the model and stratified 

based on the risk score to assess the model’s predictive 

performance and stability in the prognosis prediction. 

Additionally, we explored the correlations between risk 

score and relevant clinicopathological characteristics, 

along with signal pathways. 

 

As a result, we investigated the relationship between 

cancer stemness and the tumor microenvironment 

(TME) in CESC and subsequently selected dif-

ferentially expressed metabolism-related genes 

(DEMRGs) between high- and low-mRNAsi groups in 

CESC. Previous literature has highlighted the 

significant involvement of certain DEMRGs in 

stemness-related processes. Among 23 DEMRGs 

(including GAPDH, SLC19A1, TCN1, ARSF, CD320, 

CERS3, AKR1B10, AKR1B15, SULT2B1, SLC5A1, 

GNA15, ALOX12B, PLA2G4E, PLOD1, ALDH1B1, 

HACD1, PLOD2, AP2B1, LPCAT1, GPX8, CSPG4, 

GCNT1, BCAT1), it was found that six genes 

(AKR1B10, GNA15, ALDH1B1, PLOD2, LPCAT1, 

and GPX8) were differentially expressed in both the 

TCGA-CSEC and GEO datasets. The 23 DEMRGs are 

involved in Pantothenate and CoA biosynthesis, Lysine 

degradation, and Arachidonic acid metabolism 

pathways. AKR1B10 is a NADPH-dependent reductase 

and is highly expressed in epithelial cells. It serves as a 

prognostic factor for recurrence following surgical 

intervention in CESC [16]. ALDH1B1 gene expression 

exhibited a positive association in CESC [17]. PLOD2 

is an effective prognostic marker, which is related to the 

immune infiltration of cervical cancer [18]. LPCAT1 

had never been reported in cervical cancer but was 

reported to promote gefitinib resistance through 

upregulation of the EGFR/PI3K/Akt signaling pathway 

in lung carcinoma [19], and it has been recognized as a 

promising prognostic biomarker in liver cancer [20]. 

GPX8 has shown diagnostic potential across various 

cancers besides cervical cancer, including glioma, 

kidney cancer, and stomach cancer. Downregulation of 

GPX8 has been found to suppress the migratory and 

invasive properties of glioblastoma cells. GPX8 is under 

the regulation of FOX1 transcription and facilitates the 

proliferation of gastric cancer cells by activating Wnt 

signaling pathway [21]. Further investigations into 

cellular mechanisms regarding the interplay between 

metabolic systems and CSCs, and interventions 

targeting pivotal nodes within this interaction, hold 

promise as a strategy for cancer therapy. Furthermore, 

 

 
 

Figure 8. The IHC staining validation results of the hub genes, including GNA15, ALDH1B1, LPCAT1, and GPX8, in CESC tissues. 
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we validated four hub genes by IHC in our patients’ 

samples at protein level. 

 

We further explored the underlying roles of 

metabolism-related genes in the pathogenesis of CESC. 

These genes are implicated in key metabolic pathways 

such as glycolysis, lipid metabolism, and amino acid 

metabolism. They regulate various aspects of cellular 

metabolism, such as glucose uptake, lipid synthesis, and 

amino acid transport, which ultimately impact tumor 

cell proliferation, invasion, and metastasis. 

Dysregulation of these metabolic pathways contributes 

to the aggressive behavior of CESC. Specifically, 

enhanced glycolysis provides energy for rapid tumor 

growth, aberrant lipid metabolism supports membrane 

biogenesis and signaling pathways, and altered amino 

acid metabolism fuels protein synthesis and cellular 

proliferation. Understanding the involvement of 

metabolism-related genes in CESC pathogenesis 

provides insights into the molecular mechanisms 

underlying tumor progression and may guide the 

development of novel therapeutic strategies targeting 

metabolic vulnerabilities in CESC. 

 

This study revealed that DEMRGs between high- and 

low-mRNAsi groups in CESC were enriched in several 

critical signaling pathways. Some of these pathways 

have been implicated in regulating stemness processes. 

For instance, Retinol metabolism, Metabolism of 

xenobiotics by cytochrome P450, and PPAR signaling 

pathway have all been linked to cancer prognosis and 

the regulation of CSCs. Specifically, retinoic acid-

mediated signaling, which is involved in retinol 

metabolism and regulated by aldehyde dehydrogenase 

(ALDH), has been associated with reduced oxidative 

stress and drug resistance in cancer [22]. The PPAR 

signaling pathway is related to lymph node metastasis in 

cervical cancer and is considered to affect the 

proliferation of other cancers [23]. Additionally, 

alterations in ascorbate and aldarate metabolism have 

been observed in leiomyomas of the MED12 and triple 

wild-type subtypes, suggesting potential implications 

for tumor development [24]. Specific treatment for 

abnormal signal pathways driven by protein tyrosine 

kinase (TK), which is involved in proliferation, 

metastasis, and growth, has become a promising anti-

cancer method for several years [25]. Thiamine 

metabolism is associated with human papillomavirus 

(HPV) infection [26]. Thiamine has been linked to 

cancer due to its influence on various molecular 

pathways, including matrix metalloproteinases, 

prostaglandins, cyclooxygenase-2, reactive oxygen 

species, and nitric oxide synthase [27]. Therefore, a 
better understanding of CSC metabolic dependence and 

metabolic communication between CSC and tumor 

microenvironment is essential for effective cancer 

treatment. GSEA analysis also confirmed that 

metabolism-related signaling pathways was involved. 

 

Various cancers have shown interactions between CSCs 

and surrounding immune cells, leading to alterations in 

the tumor microenvironment [28]. In this study, we 

observed that the 8 hub mRNAsi-related genes were 

significantly correlated with different immune cell 

populations between high- and low-mRNAsi groups, 

such as B cells memory, B cells naïve, macrophages 

M1, mast cells resting, NK cells activated, T cells CD8, 

and T cells follicular helper in CESC. Especially, 

CLCA4 was negatively correlated with B cell naïve and 

plasma cells. These immune cells have been implicated 

in regulating stemness processes. For instance, CSCs 

are important in recruiting tumor-associated 

macrophages (TAMs) and polarizing them towards the 

M2 phenotype [29]. CSCs induce Treg infiltration, and 

Treg indirectly regulates the proliferation and expansion 

of CSCs through angiogenesis and EMT [30]. In our 

investigation, we observed notable distinctions in the 

composition of immune cells between high- and low-

risk score groups in cervical squamous cell carcinoma 

and endocervical adenocarcinoma (CESC). 

Additionally, immune cells exhibited the capacity to 

identify, target, and eliminate malignant cells, while 

also potentially influencing the acquisition of stem cell-

like properties in a subset of cancer cells. These 

findings underscored the potential clinical utility of 

immunotherapeutic strategies leveraging cancer stem 

cell-cell interactions within the tumor micro-

environment. 

 

The combined application of cervical cytology 

screening, HPV testing, and colposcopy leads to a 

higher detection rate of precancerous lesions in CESC. 

Additionally, the widespread adoption of HPV 

vaccination effectively reduces the risk of CESC. 

However, the high costs associated with these 

examinations and the insufficient dissemination of 

cervical cancer prevention education result in women in 

developing countries, including China, missing out on 

widespread screening and vaccination opportunities. 

Moreover, due to the atypical early symptoms of CESC 

and limitations in existing diagnostic methods, over 

50% of patients present with local infiltration or 

lymphatic metastasis upon diagnosis, with a 5-year 

survival rate of less than 17%. In the era of personalized 

medicine, accurately forecasting the clinical outcome of 

CESC patients immediately after surgery is crucial for 

precise treatment. Therefore, there is an urgent need in 

clinical practice to identify specific biomarkers that can 

accurately predict the prognosis of CESC patients, 
enabling the implementation of personalized treatment 

and follow-up plans to improve patient outcomes. 

Nowadays, many studies are currently devoted to 
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Table 4. The information of GEO dataset and TCGA dataset. 

Dataset Data type Platform Sample size Disease 

TCGA-CESC RNA-seq Illumina HiSeq sequencing 279 cervical cancer 

GSE44001 
Expression 
microarray 

Illumina HumanHT-12 WG-DASL V4.0 
R2 expression beadchip 

300 cervical cancer 

 

identifying such biomarkers (including miRNA, 

lncRNAs, and mRNA signature), with their AUCs at 1-

year, 3-year, and 5-year intervals typically around 0.7. 

In our study, however, the AUCs at 1-year and 5-year 

intervals are higher, thus enriching and complementing 

existing research in this field. 

 

Currently, with the rapid advancements in high-

throughput whole genome sequencing technology, 

accessing the vast biological information from large-

scale CESC samples has become more feasible, 

facilitating the exploration of latent information. 

Although our DEMRGs signature has advantages, like 

other bioinformatics research, the current work also has 

some limitations. Firstly, the lack of experimental 

validation necessitates further investigation into the 

potential mechanisms of the identified genes. 

Additionally, our analysis is constrained by the limited 

availability of TCGA-CESC samples and associated 

clinical data. Therefore, larger sample sizes are 

warranted to delineate the functional significance of key 

prognostic stem cell genes in predicting CESC 

progression. 

 

CONCLUSION 
 

In conclusion, our study developed a new stemness-based 

metabolic miRNAsi signature, establishing it as a 

promising prognostic marker of CESC. It is worth noting 

that our metabolic-related gene markers linked the 

molecular characteristics of CESC stem cells with 

clinical results, offering insights into potential therapeutic 

effects and prognostic predictors. In addition, this 

research method has universal applicability and certain 

reference value for other cancer types. 

 

MATERIALS AND METHODS 
 

Data sources and pre-processing 

 

The methodology of this study involved a systematic 

approach outlined in Figure 1. The reliable CESC 

expression profile dataset GSE44001 and TCGA-CESC 

were sourced from GEO database (https://www. 

ncbi.nlm.nih.gov/geo/) and TCGA (https://www.cancer. 

gov/) database by AnnoProbe package (https://github. 

com/jiangfuqing/GEO-AnnoProbe) and TCGAbiolink 

package of R software, version 4.0.2, respectively 

(http://r-project.org/). Both datasets comprised samples 

from Homo sapiens, with GSE44001 derived from the 

GPL14951 platform (Illumina HumanHT-12 WG-

DASL V4.0 R2 expression beadchip). The GSE44001 

dataset consisted of 97 cervical squamous cell 

carcinoma (CSCC) samples. The information of GEO 

dataset and TCGA dataset was shown in Table 4. The 

background signal correction, normalization, and 

summarization were performed by the affy package. 

Then the gene expression matrix of the two datasets was 

obtained. SNP mutation data retrieved from the TCGA 

database was integrated with corresponding RNA-seq 

data, and mutation landscape visualization  

was performed using the maftool package. [4]. 

Metabolic-related genes were sourced from the 

Genecards database to perform subsequent analyses 

(https://www.genecards.org/). 

 

mRNAsi calculation based on gene expression 

matrix 

 

For all samples in the two datasets, the index mRNAsi 

of gene stemness was computed based on the dataset 

matrix by ssGSEA algorithm based on relative 

expression sequence (REOs) [5], using R-package 

GSVA [6]. 

 

Screening and functional analysis of DEGs 

 

The mRNAsi of each sample obtained according to the 

method above was stratified into high-mRNAsi 

subgroup and low-mRNAsi subgroup based on the level 

of mRNAsi. The GSE44001 dataset and the TCGA-

CESC dataset obtained the DEGs between the two 

groups through the limma package and Deseq2, 

respectively [7]. We applied the ggplot2 package to 

depict the volcanic map of DEGs and used the 

pheatmap package to depict the heatmap of DEGs to 

show the DEGs expression. The criteria for selecting 

DEGs of the GSE44001 dataset are p adj < 0.05 and 

|log2fc| > 1. 

 

WGCNA 

 

The overall process of WGCNA involves calculating 

pairwise gene correlations, constructing a hierarchical 

clustering tree to identify gene modules, determining 

module significance (MS), and assessing the 

correlation between gene expression and traits of 

interest. This includes measuring gene significance 
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(GS) and module membership (MM) to identify 

relevant gene modules highly correlated with the trait. 

Finally, modules are selected based on their 

significance for further analysis. 

 

Molecular typing construction 

 

Candidate genes were included and subjected to Non-

negative Matrix Factorization (NMF) analysis using the 

R software package NMF. In this study, when a 

relatively satisfactory consensus map and cophenetic 

and silhouette coefficients were observed at the same 

time, the number of runs was set to 40 and the number 

of clusters was set to 2. The final clustering yielded two 

distinct molecular subtypes, based on gene expression 

profiles, which were visualized using a heatmap to 

display the expression patterns of key genes. 

 

Prognostic marker screening 

 

The expression profile of each candidate gene was 

computed according to the TCSC expression data by 

using the Cox proportional hazards model. Genes 

related to prognosis were selected by univariate Cox 

regression analysis, where a hazard ratio (HR) greater 

than 1 indicated a risk gene, while an HR less than 1 

indicated a protective gene. Statistical significance 

was set at p < 0.1. Subsequently, LASSO Cox 

regression analysis was employed for variable 

selection and shrinkage within the Cox proportional 

hazards model. This approach constructs a penalty 

function to refine the model and improve predictive 

accuracy. Next, we applied the lasso algorithm to 

screen possible variables in the Cox regression model 

to identify important prognostic markers, and we 

selected a standard error (SE) higher than the 

minimum standard. A stepwise Cox proportional-

hazards (Cox PH) regression model was constructed 

to search the predictors of overall survival. The gene 

variables were entered into the model. This stepwise 

regression approach was employed to optimize the 

model and enhance its practical utility, with a 

threshold level set at 5% to identify a concise yet 

informative model comprising essential genes 

(markers) and relevant clinical covariates associated 

with CESC prognosis. 

 

In our study, we used the glmnet package in R for lasso 

regression and the step function in the survival package 

for stepwise Cox regression. For lasso regression, 

common parameter settings include λ chosen via cross-

validation (e.g., cv.glmnet function with nfolds 

parameter) and max iterations set to a sufficiently large 
value (e.g., 1000). For stepwise Cox regression, entry 

and exit criteria are typically set at p < 0.05, and both 

forward and backward selection directions can be 

explored. Finally, by taking the optimized gene 

expression and relatively estimating the Cox regression 

coefficient into consideration, we calculated the risk 

score based on the formula: risk score = (exp-Gene1 × 

coef-Gene1) + (exp-Gene2 × coef-Gene2) + …… + 

(exp-Gene × coef-Gene). 
 

Accordingly, samples were stratified into high-risk 

group and low-risk group according to the given risk 

score. Kaplan-Meier analysis, supplemented by a log-

rank test, was conducted using the survival package to 

assess overall survival (OS) within the test cohort. 

Additionally, survival prediction was evaluated through 

ROC curve analysis. The prognostic or predictive 

accuracy was quantified by calculating AUC using the 

pROC package. 

 

Immune correlation analysis and its correlation with 

hub gene 

 

Following data upload and filtering (P < 0.05), the 

immune cell infiltration matrix was obtained. 

Distribution of the 22 immune cell types across samples 

was visualized using histograms generated with the 

ggplot2 package. Furthermore, the ggcorrplot package 

facilitated the creation of heatmaps to illustrate the 

association between hub genes and immune cell 

infiltration or immune-related genes. Tumor immune 

scores, including stromal score, immune score, and 

estimate score, were computed according to mRNA 

expression by estimate method from the R package. 

 

IHC staining 

 

Paraffin-embedded tissue samples were sectioned at 4 

μm thickness. Antigen retrieval was conducted by 

incubating the sections in citrate buffer (pH 6.0) at 

100°C in a microwave oven for 15 minutes, followed by 

natural cooling to room temperature. Following  

blocking with a mixture of methanol and 0.75% 

hydrogen peroxide, the sections were sent to incubate 

overnight with primary antibodies (GNA15, ALDH1B1, 

LPCAT1, GPX8) at specified dilutions. Subsequently, 

secondary antibodies conjugated with HRP were 

applied, followed by washing with PBS and incubation 

with AEC substrate. Further details of the analysis 

procedure can be found in our previous publication 

[14]. 

 

Statistical analysis 
 

Data processing and analysis were performed by R 

software. For comparisons between groups, statistical 

significance of continuous variables was assessed using 

t-tests or Mann-Whitney U-tests, while categorical 

variables were compared using chi-square or Fisher’s 
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exact tests. Pearson correlation analysis was used for 

gene correlations. Survival analyses utilized Kaplan-

Meier curves and log-rank tests, with Cox regression for 

prognostic factors. All reported P-values were two-

sided, with P < 0.05 considered significant. 

 

Data availability 

 

The data used to support the findings of this research 

are available from TCGA database (https:// 

cancergenome.nih.gov/); and Gene Expression Omnibus 

database (https://www.ncbi.nlm.nih.gov/geo/). 
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